
An In-Network Replica Selection Framework
for Latency-Critical Distributed Data Stores

Yi Su , Dan Feng,Member, IEEE, Yu Hua , Senior Member, IEEE, Zhan Shi , and Tingwei Zhu

Abstract—In distributed data stores, performance fluctuations generally occur across servers, especially when the servers are

deployed in a cloud environment. Hence, the replica selected for a reading request will directly affect the response latency. However,

replica selection is challenging in latency-critical data stores (e.g., key-value stores). Such data stores generally deal with small size

data, and clients have to select replicas independently. Even the state-of-the-art algorithm of replica selection (C3) still has

considerable room for improving the latency. According to our experiments, compared with C3, using the ideal replica selection

(Oracle) reduces the 99th latency by about 34-60 percent. In this article, we propose NetRS to address the fundamental factors that

prevent replica selection algorithms from being effective. NetRS is a framework that enables in-network replica selection for distributed

data stores. It exploits emerging network devices, including programmable switches and network accelerators, to select replicas for

requests. NetRS supports diverse algorithms of replica selection and is suited to the network topology of modern data centers.

According to our extensive evaluations, compared with the conventional scheme of clients selecting replicas for requests, NetRS

reduces the mean latency by up to 50.3 percent, and the 99th latency by up to 56.3 percent. Moreover, NetRS could effectively cut the

response latency even when unexpected events (e.g., workload changes, network device failures), and network congestion occur.

Index Terms—Replica selection, in-network computing, response latency, distributed storage

Ç

1 INTRODUCTION

THE DISTRIBUTED data store is a vital component of
modern Web applications [1], [2], [3]. For such applica-

tions, minimizing the response latency is critical due to their
interactive nature. Even the poor tail latency in the data
store may have a dramatic impact on user-perceived laten-
cies because serving only one end-user request typically
requires hundreds or thousands of storage accesses [4].

In distributed data stores, e.g., Cassandra [5] and Dynamo
[6], the replica selection scheme plays an important role in
cutting response latency. The workloads of such data stores
are commonly read dominant [7]. For a reading request, rep-
lica selection has a direct impact on the response latency
under fluctuations of server performance, which are the
norm [8], [9], [10], [11].

We propose NetRS [12] to improve the replica selection in
large-scale data stores. NetRS is a framework that enables the
in-network replica selection in data centers. NetRS offloads
tasks of replica selection to programmable network devices,
including programmable switches (e.g., Barefoot Tofino [13])
and network accelerators (e.g., Cavium’s OCTEON [14],
Netronome’s NFE-3240 [15]). In addition to the control plane
programmability with Software Defined Networking (SDN)
switches [16], programmable network devices enable the data

plane programmability. Specifically, programmable switches
are able to parse application-specific packet headers, match
custom fields in headers and perform corresponding actions.
Network accelerators can perform application-layer computa-
tions for each packetwith a low-powermulticore processor.

Selecting replicas properly is challenging for large-scale
systems, in which, the concurrency of one server is much
smaller than the number of clients, and most of these end-
hosts are connected via multiple switches. Considering
that latency-critical data stores (e.g., key-value stores) typi-
cally deal with small size data [4] (e.g., 1KB), replica selec-
tion algorithms [5], [9] have to work in a distributed
manner to avoid the latency penalties of network commu-
nications or cross-hosts coordinations at the per-request
level. With the conventional scheme, each client is one
Replica Selection Node (RSNode). An RSNode indepen-
dently selects replicas for requests based on its local infor-
mation, including the data collected by itself (e.g., the
number of pending requests) and/or the server status pig-
gybacked in responses. Piggybacking data in response
packets is the typical approach to delivering server status
to clients. Piggybacking avoids the overheads of network
protocols due to not constructing separate network packets
for the status of a few bytes. The client-based RSNodes
may reduce the effectiveness of replica selection algo-
rithms due to the following two factors:

(i) A client is likely to select a poorly-performing server
for a request due to using stale server status. As cli-
ents rely on requests and responses to update local
information, the traffic flowing through a client
determines the recency of its local information. Con-
sidering that one client typically sees a small portion

� The authors are with the Wuhan National Laboratory for Optoelectronics,
Key Laboratory of Information Storage System, Ministry of Education of
China, School of Computer Science and Technology, Huazhong University
of Science and Technology, Wuhan 430074, China. E-mail: {suyi, dfeng,
csyhua, zshi, twzh}@hust.edu.cn.

Manuscript received 18 Oct. 2018; revised 18 Dec. 2019; accepted 17 Feb.
2020. Date of publication 24 Feb. 2020; date of current version 7 June 2022.
(Corresponding author: Dan Feng.)
Recommended for acceptance by E. Elmroth.
Digital Object Identifier no. 10.1109/TCC.2020.2976008

944 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

2168-7161 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 09,2022 at 01:42:27 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9569-6447
https://orcid.org/0000-0002-9569-6447
https://orcid.org/0000-0002-9569-6447
https://orcid.org/0000-0002-9569-6447
https://orcid.org/0000-0002-9569-6447
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0002-7798-1121
https://orcid.org/0000-0002-7798-1121
https://orcid.org/0000-0002-7798-1121
https://orcid.org/0000-0002-7798-1121
https://orcid.org/0000-0002-7798-1121
https://orcid.org/0000-0001-6510-8707
https://orcid.org/0000-0001-6510-8707
https://orcid.org/0000-0001-6510-8707
https://orcid.org/0000-0001-6510-8707
https://orcid.org/0000-0001-6510-8707
mailto:suyi@hust.edu.cn
mailto:dfeng@hust.edu.cn
mailto:csyhua@hust.edu.cn
mailto:zshi@hust.edu.cn
mailto:twzh@hust.edu.cn

of the traffic, lots of clients will selects replicas based
on stale and limited local information.

(ii) Servers may suffer from load oscillations due to
“herd behavior” (multiple RSNodes simultaneously
choose the same replica server for requests) [9]. The
occurrence of “herd behavior” is positively corre-
lated to the number of independent RSNodes. Due
to the large number of clients, servers are highly
likely to suffer from load oscillations.

NetRS can effectively address these two factors. In data cen-
ters, as network devices (e.g., switches) are much fewer than
end-hosts, network devices can automatically gather traffic.
Hence, NetRS has two advantages over client-based replica
selection. First, compared with clients, a network device could
obtain more recent local information by gathering traffic. Then,
as RSNodes, network devices are more likely to choose better
replicas for requests. Second, NetRS could reduce the occur-
rence of “herd behavior” with fewer RSNodes as one network
device could select replicas for requests frommultiple clients.

Offloading replica selection to network is non-trivial,
there are following challenges:

(i) Determine the RSNodes Placement. In data centers, a
request from a client needs to flow through multiple
switches until arriving at the server. In fact, with SDN
forwarding rules, a request could flow through any
switches out of the default (shortest) network paths by
taking extra hops. Although any hop can be the
RSNode for a request, we should carefully determine
the placement of RSNodes to optimize the overall per-
formance and meet constraints of the system. Given
the high complexity of this placement problem, we
also need to quickly solve it to handle unexpected
events, likeworkload changes, switch failures, etc.

(ii) Keep Things in Network. NetRS should keep things in
network as much as possible. On one hand, it is
much easier for clients and servers of data stores to
take advantage of NetRS without knowing NetRS
internals (e.g., RSNodes placement). On the other
hand, NetRS could stay simple and avoid manage-
ment overheads, like coordinating a large number of
clients and servers when the RSNodes placement
changes, network devices fail, etc.

(iii) Accommodate Diverse Algorithms. First, NetRS should
integrate programmable network devices to meet
both computational and storage requirements of
diverse replica selection algorithms. Second, NetRS
should provide flexible interfaces for RSNodes col-
lecting necessary inputs of diverse algorithms. More-
over, algorithms may rank replicas according to
metrics determined by both the requests and their
responses, e.g., the number of pending requests.
However, a request and its response may flow
through different network paths (different sets of
switches) in modern data centers due to redundant
switches. Therefore, NetRS should be able to guaran-
tee that one request and its corresponding response
flow through the same RSNode.

In summary, our contributions include:

(i) Architecture of NetRS. We design the NetRS framework
that enables in-network replica selection for distributed

data stores. NetRS integrates the strengths of program-
mable switches and network accelerators by designing
flexible formats of NetRS packets and customizing
processing pipelines for each network device. More-
over, NetRS could support diverse replica selection
algorithms.

(ii) Formalization of RSNodes Placement. We use Integer
Linear Programming (ILP) to formalize the RSNodes
placement problem in the modern data center net-
work with a complex topology. Our formalization
comprehensively considers the requirements of rep-
lica selection algorithms, the NetRS’s utilization of
each network device, and the network overheads
caused by taking extra hops to RSNodes.

(iii) Algorithms of RSNodes Placement. We propose fast and
efficient algorithms to find an approximately optimal
solution for the RSNodes placement problem, which
is an NP-complete problem. With these algorithms,
NetRS could adaptively change the RSNodes place-
ment in case of workload changes, network device
failures, etc.

(iv) System Evaluation. We evaluate NetRS using simula-
tions in a variety of scenarios. Under open-loopwork-
loads, NetRS reduces the mean latency by up to
50.3 percent and the 99th latency by up to 56.3 percent
compared with client-based replica selection. Under
closed-loop workloads, NetRS improves the through-
put by up to 56.2 percent compared with client-based
replica selection.Moreover, NetRS can reduce latency
regardless of workload changes or RSNodes failures.

2 OVERVIEW OF NETRS

In this section, we describe the design of NetRS, how NetRS
exploits programmable network devices, and how NetRS
works in the network of modern data centers.

NetRS selects replicas using both programmable switches
and network accelerators. As the related hardware is new
and evolving, NetRS only relies on the basic and standard
abilities of these kinds of hardware. The feasibility of exploit-
ing these abilities are verified many times, lots of systems
relying on the same abilities have been deployed success-
fully (e.g., deep packet inspection [14], [15], in-network
cache [17], packets sequencing [18], [19], etc.).

The data center network generally uses a hierarchical
topology [17], [20], [21] as shown in Fig. 1. End-hosts are com-
monly organized in racks (each rack contains about 20 to 40
end-hosts). End-hosts in a rack connect to a Top of Rack
(ToR) switch. A ToR switch connects to multiple aggregation
switches for higher robustness and performance. The directly
interconnected ToR and aggregation switches fall into the
same pod, as do the end-hosts that connect to the ToR
switches in the pod. An aggregation switch further connects
to multiple core switches. Redundant aggregation and core
switches create multiple network paths between two end-
hosts that are not in the same rack.Moreover, due to thewide
adoption of SDN in data center networks, there is also a cen-
tralized SDN controller. The controller connects to all
switches via low-speed links.

The programmable switch provides both the fast packets
forwarding and customizable pipelines of packet processing

SU ET AL.: IN-NETWORK REPLICA SELECTION FRAMEWORK FOR LATENCY-CRITICAL DISTRIBUTED DATA STORES 945

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 09,2022 at 01:42:27 UTC from IEEE Xplore. Restrictions apply.

at the data plane. With a customized pipeline, a switch can
recognize application-specific packet formats, match cus-
tom fields, and perform actions like adaptive routing and
header modifications. The network accelerator is able to per-
form general computations with a multicore (or manycore)
processor and several gigabytes of memory. Compared with
general-purpose CPUs, network accelerators are optimized
for packets processing: (i) the network accelerator supports
fast Direct Memory Access (DMA) between ingress/egress
ports and internalmemory, (ii) it supports fast packets distri-
bution among processing cores, (iii) it supports hardware
accelerations for typical operations in packets processing,
e.g., patternmatching. A network accelerator can easily satu-
rate the bandwidth of an Ethernet port (40 Gbps-100 Gbps),
and the Round-Trip Time (RTT) between a switch and its
accelerator is low (about 2.5us for a 1KB packet) [17].

NetRS is a hardware/software co-design framework that
enables in-network replica selection for distributed data
stores. Fig. 1 shows the NetRS architecture. The basic unit of
NetRS is the NetRS operator, which is a collection of hard-
ware and software. The hardware part is similar to the hard-
ware model proposed in IncBricks [17], which consists of a
programmable switch and a network accelerator attached to
the switch. A switch could belong to multiple NetRS opera-
tors if there are multiple accelerators attached to the switch.
Switches are responsible for filtering NetRS related packets
and forwarding them to appropriate accelerators if necessary.
Accelerators are responsible for performing application-layer
computations (e.g., replicas ranking). NetRS has to use such a
hardwaremodel because the programmable switch only sup-
ports simple operations, e.g., reading from memory, writing
to memory, to keep the high speed of packet forwarding. The
software part includes NetRS rules, the NetRS monitor, and
the NetRS selector. While all switches have NetRS rules, the

NetRSmonitor only resides on the ToR switch, and theNetRS
selector runs on the network accelerator.

When a packet arrives, the switch determines the next
hop for the packet according to NetRS rules (detailed in
Section 5.2). In the case that a switch forwards the packet
(or the packet’s clone) to the network accelerator, the NetRS
selector would (i) choose a replica server for the packet if
the packet is a request of data store or (ii) use the packet to
update local information if the packet is a response of data
store (detailed in Section 5.3). The NetRS monitor collects
traffic statistics (detailed in Section 5.4).

NetRS aims to cut the response latency in data stores by
making full use of accelerators in the data center network. In
data centers, multiple applications share the links, switches
and network accelerators. NetRS should minimize their
impacts on other applications to efficiently share network
devices with them. Therefore, NetRS should be able to limit
its bandwidth overheads and its utilization of accelerators.
According to these constraints, the network topology and
traffic statistics collected by NetRS monitors, a NetRS con-
troller finds a placement of RSNodes that maximizes the
overall system performance (detailed in Section 3). In NetRS,
we call the placement of RSNodes as the Replica Selection
Plan (RSP). Given an RSP, the NetRS controller first turns the
RSP into NetRS rules and updates the NetRS rules on corre-
sponding switches (detailed in Section 4). Then switches will
route packets according to the placement of RSNodes deter-
mined by theNetRS controller.

3 RSNODES PLACEMENT PROBLEM

This section states the problem of RSNodes placement in
modern data centers. We provide a detailed description of
the problem, then formalize the problem using Integer Lin-
ear Programming (ILP). At last, we propose a heuristic algo-
rithm that finds approximately optimal solutions.

3.1 Problem Description

We consider the problem by first dividing requests into dif-
ferent traffic groups. Then the Replica Selection Plan (RSP)
specifies the NetRS operator that works as the RSNode for
requests of each traffic group. The granularity of dividing
requests is a key aspect of the RSP, and the typical candidates
of the granularity are: (i) request-level group (one request as a
group), (ii) host-level group (requests from the same host as
a group), (iii) rack-level group (requests from the same rack as
a group). Finer-grained traffic groups provide more flexibil-
ity in making the RSP. However, finer-grained traffic groups
(i) require more efforts to find the optimal RSP due to larger
solution space, and (ii) introduce more overheads when car-
rying out an RSP in data center network because of network
devices dealing with more cases. In fact, for the request-level
group, per-request level coordinations are unavoidable
because every request introduces a new group to the RSP.
Hence, NetRS does not consider the scenario of using the
request-level group. In this paper, we focus on the scenario
of dividing requests based on host-level groups, rack-level
groups or any intervening-level groups (requests from sev-
eral end-hosts in the same rack as a group).

The placement problem of RSNodes is an optimization
problem of assigning each traffic group’s RSNode to a NetRS

Fig. 1. An overview of the NetRS architecture.

946 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 09,2022 at 01:42:27 UTC from IEEE Xplore. Restrictions apply.

operator. We have the following optimization goals to cope
with the two factors (detailed in Section 1) that hurt the effec-
tiveness of replica selection algorithms.

� Goal 1: Maximizing the recency of local information
for an RSNode.

� Goal 2: Minimizing the occurrence of “herd behavior”.
There are also constraints as follows:

� Constraint 1: There should be only one RSNode for
each request.

� Constraint 2: NetRS’s utilization of each network
accelerator should be limited.

� Constraint 3: The total amount of extra hops to RSNo-
des that requests take should be limited.

Constraint 1 exists because replica selection algorithms typ-
ically rely onmetrics correlatedwith decisions of replica selec-
tion (e.g., the number of a server’s pending requests). Hence
performing replica selection multiple times for one request
could make the RSNode, whose decision is not the final one,
uses incorrect input values to select replicas for following
requests. Furthermore, selecting a replica for each request at
multiple NetRS operators introduces unnecessary latency
overheads. It is because the request has to wait for replica
selectionmultiple times while the final RSNode overwrites all
previous decisions. We use Constraint 2 to prevent NetRS
from overusing each network accelerator. On one hand, high
utilization of a network accelerator will make requests wait a
long time for replica selection. On the other hand, considering
that multiple applications share network accelerators, NetRS
should not use a network accelerator excessively. Constraint 3
enables the trade-off between the flexibility of making RSP
and the network overheads of taking extra hops. If the
RSNode for requests of a traffic group is located in a NetRS
operator, which is out of default network paths of these
requests, the requests should take extra hops to reach the
RSNode. Extra hops introduce latency overheads and occupy
extra resources of the shared data center network.

3.2 Problem Formalization

We formalize the problem of RSNodes placement as an Inte-
ger Linear Programming (ILP) problem. In order to achieve
Goal 1 and Goal 2, we minimize the number of merged RSNo-
des in the ILP problem. Amerged RSNode is a union of traffic
group’s RSNodes located in the same NetRS operator. Each
merged RSNode independently selects replicas and RSNodes
in onemerged RSNode share local information. There are two
advantages to using fewer merged RSNodes. First, the aver-
age traffic flowing through onemerged RSNodewill increase.
As RSNodes use requests and responses to update local infor-
mation, a merged RSNode could obtain more recent informa-
tion on average. Second, as the occurrence of “herd behavior”
has a positive correlation with the number of independent
RSNodes, we could avoid “herd behavior” as much as possi-
ble byminimizing the number ofmergedRSNodes.

Suppose P is a binary matrix that shows the RSP. If we
perform replica selection for requests of the traffic group gi
at the NetRS operator oj, Pij will be set to 1, and 0 otherwise.
D is a binary vector that shows the distribution of merged
RSNodes among all NetRS operators. If a NetRS operator oj
works as an RSNode for requests of any traffic group, then
Dj will be set to 1, otherwise 0.

Suppose R is a binary matrix that describes the relation-
ship between traffic groups andNetRS operators, for a traffic
group gi and a NetRS operator oj, if oj is in default network
paths that are between the end-host of gi and any end-host of
another pod,Rij will be set to 1, otherwise 0. In the multi-tier
topology of the data center network described in Section 2,
suppose end-hosts of the traffic group gi connect to the ToR
switch sgi. We could determine Rij based on following rules:
(i) if oj is in the tier of core switches, thenRij ¼ 1; (ii) if oj is in
the tier of aggregation switches,Rij ¼ 1 only when oj and sgi
are in the same pod, and Rij ¼ 0 otherwise; (iii) if the oj is in
the tier of ToR switches, then Rij will be set to 0 except that
the switch of oj is located in sgi, whichmakesRij ¼ 1. We can
determineR according to the network topology.

Suppose T is a matrix that describes the traffic composi-
tion of each traffic group. In the multi-tier network described
in Section 2, we define the tier ID of a NetRS operator as the
minimum number of connections between the NetRS opera-
tor and any node in the top tier (the tier of core switches is
the top tier). According to the highest tier that requests flow
through with the default network paths, the requests of a
traffic group fall into 3 categories: the Tier-2 traffic (commu-
nication between end-hosts in the same rack), the Tier-1 traf-
fic (communication between end-hosts in the same pod but
in different racks), and the Tier-0 traffic (communication
between end-hosts in different pods). For a traffic group gi,
Tik is its Tier-k traffic. We can get T from traffic statistics col-
lected byNetRSmonitors (Section 5.4).

Suppose a NetRS operator oj could perform replica selec-
tionwithout introducing significant delay or impacts on other
applications if NetRS’s utilization of its accelerator is under
Uj. Then the maximum traffic Tmax

j , which use the NetRS
operator oj as the RSNode, should be under Ujc

ac
j =t

ac
j , where

cacj is the number of cores in the accelerator and tacj is themean
service time of selecting replica. Due to using a separate traffic
threshold Tmax

j for each NetRS operator, our formalization of

RSNodes placement is suitable for scenarios of sharing accel-
erators with other applications. NetRS could effectively
exploit the underloaded accelerators by setting higher traffic
thresholds for them.

We limit the total amount of extra hops by a constant E.
When calculating the number of extra hops, we consider the
difference of total forwarding times between going through
the RSNode and going directly to the server. For example,
for Tier-2 traffic, if the RSNode lies in the tier of core
switches, then the amount of extra hops for one request is 4
(a request will be forwarded once to get to the server with
the default network path, and going to the RSNode makes it
be forwarded 5 times, hence the extra hops of the request is
4 ¼ 5� 1). We can get Tmax

j and E from system administra-
tors, who determine the values based on policies of resource
allocation for applications and the system running status.

Suppose tðxÞ is a function that returns the tier ID of a
NetRS operator ox or a traffic group gx (the gx’s tier ID is
same as the tier ID of the NetRS operator, to which end-
hosts of gx directly connects), and hði; jÞ ¼ tðiÞ � tðjÞ.

The description of the ILP problem is as follows.

Minimize :
X

Dj (1)

SU ET AL.: IN-NETWORK REPLICA SELECTION FRAMEWORK FOR LATENCY-CRITICAL DISTRIBUTED DATA STORES 947

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 09,2022 at 01:42:27 UTC from IEEE Xplore. Restrictions apply.

Subjects to :

8i; 8j : Pij 2 f0; 1g; Dj 2 f0; 1g (2)

8i; 8j : Dj � Pij � 0 (3)

8i; 8j : Rij � Pij � 0 (4)

8i :
X

Pij ¼ 1 (5)

8j :
X

Pij

XtðiÞ
k¼0

½Tik�
 !

� Tmax
j (6)

X
Pij

Xhði;jÞ
k¼0

½2ðhði; jÞ � kÞTiðtðiÞ�kÞ�
 !

� E: (7)

Among the constraints of the ILP problem, Equation (2)
suggests that P and D contain only binary elements,
Equation (3) guarantees that a NetRS operator is consid-
ered as an RSNode if it selects replica for any traffic group,
Equation (4) reduces the solution space by forbidding a
request to flow from the tier to its lower tier before the request
reaching its RSNode. Such a restriction help to avoid
extra hops that form loops between tiers. Finally,
Equation (5) , (6) and (7) correspond to Constraint 1, Constraint
2 and Constraint 3, respectively. Besides the 3-tier topology
shown in Fig. 1, the formalization is applicable to n-tier
(n 2 f1; 2; . . .g) tree-based topologies of data center network.

3.3 Heuristic Algorithm

In modern data centers, there are typically hundreds of
switches and thousands of hosts. For large-scale systems, it
would take hours to solve the ILP problem, which is an NP-
complete problem. However, In practice, we need to deter-
mine the RSP in a timely manner to handle unexpected
events (e.g., workload changes). Hence, we propose a heu-
ristic algorithm to quickly find an approximately optimal
RSP. Our algorithm uses a step-by-step strategy to deter-
mine the RSNode for each traffic group sequentially.

We design the heuristic algorithm according to the obser-
vation that NetRS operators located in upper tiers (operators
having smaller tier ID) are able to aggregate more traffic.
Hence, in order to minimize the number of merged RSNo-
des, our algorithm increases the chance of merging RSNodes
by trying to migrate RSNodes from a lower tier to an upper
tier. The algorithm also performs horizontal and downward
migration to avoid violations of constraints. Due to con-
straints, we cannot migrate all RSNodes to the upper tier.
The algorithm should postpone the upward migration of
RSNodes that potentially provides fewer benefits on merg-
ing RSNodes. (i) For an RSNode, if the upper tier traffic of its
corresponding traffic group is less than a threshold tup, we
should postpone its upward migration because migrating
the RSNode could introduce toomany extra hops.

Considering that the total amount of extra hops is limited,
we may migrate more RSNodes to the upper tier by not
migrating this one. With a smaller tup, the algorithm may
make better decisions at the expense of responsiveness. We
can set the tup according to the limitation of extra hops, e.g., a
smaller tup under a stricter limitation; (ii) Suppose we have
already migrated some RSNodes to the upper tier. For an

RSNode, if none of those “migrated RSNodes” could be
migrateddownward andmergedwith theRSNode,we should
postpone its upwardmigration. For example, if none of RSNo-
des in the Tier-0 is of Pod-1, then we should postpone migrat-
ing Pod-1 RSNodes from Tier-1 to Tier-0 (an RSNode being of a
Podmeans that the RSNode selects replicas for traffic from cli-
ents in the Pod). This rule reduces the chance of splitting a
merged RSNode for multiple traffic groups into two (only
migrating a part of themergedRSNode to the upper tier).

The details of our algorithm are shown in Algorithm 1.
When the traffic statistics of a group are updated, Algorithm 1
first checks whether the total amount of extra hops exceeds
the threshold E (Constraint 3). It avoids violating Constraint 3
by migrating the corresponding RSNode downward (lines
2-3). Then Algorithm 1 prevents the traffic flowing through
onemergedRSNode frombeing too high (Constraint 2) by hor-
izontally or downward migrating the RSNode (lines 4-8). If
there is no constraint violations, Algorithm 1 tries to migrate
the RSNode upward and looks for opportunities of merging
RSNodes (lines 9-15). If the upward migration is denied, we
horizontally migrate the RSNode to merge RSNodes in the
current tier (lines 11, 14).

Algorithm 1. Update Replica Selection Plan

Params: g (traffic group with newly reported traffic statis-
tics), t (traffic statistics for g), r (RSNode for g), c
(threshold of multi-confirm times), od (destination
NetRS operator for r)

1 Function UpdateRSPðt; r; cÞ
2 if Violate Constraint 3 then
3 od = DownwardMigration(r); return od
4 if Violate Constraint 2 then
5 od = HorizontalMigration(r);
6 if No RSNode is located in od then
7 od = DownwardMigration(r)
8 return od
9 od = UpwardMigration(r);
10 ifUpward migration cannot (potentially) reduce merged RSNo-

des then
11 od = HorizontalMigration(r); return od
12 if Upward migration of r should be postponed then
13 if c > confirmed times of migrating r then
14 od = HorizontalMigration(r);
15 return od
16 end Function

In Algorithm 1, we consider that upward migrating an
RSNode has the potential of reducing merged RSNodes
when at least one of the following cases is true. Suppose the
RSNode is currently assigned to the NetRS operator o. (i)
We could migrate all RSNodes in NetRS operator o to the
upper tier without introducing new merged RSNodes. In
this case, we may be able to eliminate one merged RSNodes
by migrating all its RSNodes to the upper tier in the future.
(ii) We could migrate all RSNodes in NetRS operator o and
RSNodes in other x NetRS operators to the upper tier while
introducing no more than x new merged RSNodes. In this
case, we allow upward migration even when there is no
RSNode in the upper tier.

We design a mechanism called multi-confirm to post-
pone an upward migration. Suppose c is the threshold of

948 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 09,2022 at 01:42:27 UTC from IEEE Xplore. Restrictions apply.

multi-confirm times. For an RSNode whose upward migra-
tion should be postponed, we perform the migration only if
Algorithm 1 determines to migrate the RSNode to the upper
tier c times in a row. Before Algorithm 1 determines to
upward migrate an RSNode for the c-th time, traffic statistics
of other groups should have been reported so thatAlgorithm1
can make a more informed decision. Under this premise, we
should minimize c as Algorithm 1 could be less responsive
with a larger c.

4 NETRS CONTROLLER

In this section, we first introduce an exception handling
mechanism (Section 4.1) that ensures the high availability of
the data store. Then we show how the controller determines
the RSNodes placement (Section 4.2) and deals with failures
of NetRS operators (Section 4.3).

4.1 Exception Handling Mechanism

NetRS uses a mechanism of Degraded Replica Selection
(DRS) to handle exceptions. The DRS requires that clients
should provide a target replica for each request as a backup.
If the DRS for a request is enabled by the NetRS controller,
NetRS will route the request to the backup replica provided
by the client. The NetRS controller enables the DRS for each
traffic group independently by updating NetRS rules of
NetRS operators without interactions with end-hosts.

Currently, the DRS is necessary for the following scenar-
ios. (i) No feasible RSP exists. If there are some traffic
groups that we cannot find NetRS operators as their RSNo-
des without violating the constraints, the RSNodes place-
ment problem in Section 3 would have no feasible solution.
In this case, we could enable the DRS for some traffic groups
so that a feasible RSP exists for the rests. Considering that
enabling DRS for a traffic group will lead to additional
RSNodes, the number of traffic groups using the DRS
should be as small as possible. Moreover, the traffic of a
group using DRS should be high to prevent clients from
selecting poorly-performing replica servers, which hurts the
tail latency. Hence, the NetRS controller turns DRS on for
groups with the highest traffic until finding a feasible RSP.
(ii) A NetRS operator does not work as expected, e.g the
NetRS’s utilization exceeds the threshold due to workload
changes. The NetRS controller will enable the DRS for some
traffic groups that use the NetRS operator as RSNode. (iii)
The NetRS operator working as an RSNode fails.

4.2 Determining RSNodes Placement

The NetRS controller needs some inputs to determine the
RSNodes placement, including (i) traffic statistics of each
traffic group, specifically, each tier’s traffic in a traffic group;
(ii) The maximum traffic that is allowed for using each
NetRS operator as an RSNode; and (iii) the maximum
amount of extra hops allowed. These inputs may change
due to many causes. The NetRS controller is able to detect
input changes due to causes, like changes of workloads, fail-
ure of clients, by monitoring the traffic at each NetRS opera-
tor. The NetRS controller could also subscribe to events of
the system to detect input changes. For example, in the vir-
tualized environment, the migration of virtual machines
may imply the remapping of clients and servers to end-

hosts, which leads to traffic changes of each traffic group.
The system should notify the NetRS controller for some
input changes, like changes of resource allocation policies.

Given the required inputs, the NetRS controller can use
two approaches to determine the RSP. On one hand, the
controller can get the RSP by solving the ILP problem with
an optimizer (e.g., Gurobi [22], CPLEX [23]). Using this
approach, when inputs have changed, the controller first
enables DRS for involved traffic groups to avoid constraint
violations. Then it waits for the optimizer to solve the ILP
again. On the other hand, the controller can use Algorithm 1
to determine the RSP. With this approach, the controller first
initializes the RSP by placing RSNodes in NetRS operators
of lower tiers (there should be no constraints violation). For
example, the controller could specify the NetRS operator(s)
co-located with the rack’s ToR switch as the RSNode for
requests from the rack. Then, the controller optimizes the
RSP by migrating RSNodes according to Algorithm 1. Con-
sidering that Algorithm 1 optimizes the RSP by strategically
migrating RSNodes to upper tiers, the NetRS controller has
to go through this procedure again (first initializes and then
optimizes the RSP) when inputs have changed.

4.3 Fault Tolerance

The NetRS framework is able to handle failures of NetRS
operators. We assume the NetRS controller be always avail-
able because (i) it is not on the critical path of accessing the
data store, and (ii) it could be highly available with standbys.

Algorithm 2. Update Replica Selection Plan When Fail-
ures Occur

Params: Rf (set of RSNodes located in failed NetRS opera-
tors), Of (set of failed NetRS operators), Tmax

o (max
traffic that can use NetRS operator o as RSNodes),
or (destination NetRS operator for RSNode r)

1 Function FailureUpdateRSPðRf;OfÞ
2 for r in Rf do
3 Enable DRS for traffic group of RSNode r
4 for o in Of do
5 Tmax

o = 0
6 for r in Rf do
7 or = HorizontalMigration(r);
8 if There is no feasible or then
9 or = DownwardMigration(r)
10 Update the RSP (placing r in or)
11 end Function

The NetRS controller monitors the availability of NetRS
operators. On one hand, if the failed NetRS operator is not
an RSNode, the NetRS controller does nothing because the
failure will not affect the replica selection of NetRS. How-
ever, the NetRS controller will prevent unavailable NetRS
operators from becoming RSNodes while determining a
new RSP. As there are lots of mature mechanisms [20] that
make the data center network highly available, we assume
that the failures do not affect packets routing. On the other
hand, if the failed NetRS operator works as an RSNode for
some traffic groups, the NetRS controller enables the DRS
for corresponding traffic groups. Since network devices are
highly reliable [24] and updating NetRS rules only takes
about a few milliseconds [18], failures of NetRS operators

SU ET AL.: IN-NETWORK REPLICA SELECTION FRAMEWORK FOR LATENCY-CRITICAL DISTRIBUTED DATA STORES 949

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 09,2022 at 01:42:27 UTC from IEEE Xplore. Restrictions apply.

should not significantly affect the system availability. How-
ever, due to not taking full advantage of NetRS, the system
may experience sudden performance degradation.

Tominimize the impact of failures of NetRS operators, we
propose Algorithm 2 to quickly find an alternative RSP
when failures occur. Algorithm 2 first enables DRS for RSNo-
des in failed NetRS operators to minimize the impact of fail-
ures on the system availability (lines 2-3). Then Algorithm 2
sets the maximum traffic allowed using a failed operator as
an RSNode to 0 so that no RSNode would be assigned to
them (lines 4-5). For each RSNode in failed operators, we
search an alternative operator for it by first trying to migrate
it horizontally and then downward (lines 6-10). Algorithm 2
does not perform upward migration. If the NetRS controller
determines the RSP by solving the ILP problem, then allow-
ing upwardmigration makes the placement of RSNodes that
are located in failed operators another ILP problem and solv-
ing it could be time-consuming. If theNetRS controller deter-
mines the RSP using Algorithm 1, then Algorithm 1 should
be the one to handle upwardmigrations.

5 NETRS OPERATOR

This section describes the NetRS operator. We first intro-
duce the packet format of NetRS (Section 5.1). Then, we
show the processing pipeline of a programmable switch
according to NetRS rules (Section 5.2), and the working pro-
cedure of a NetRS selector running on the network accelera-
tor (Section 5.3). Finally, we present how NetRS monitors
collect traffic statistics (Section 5.4).

5.1 Packet Format

The packet format plays an important role in propagating
information. Clients, servers, switches and network acceler-
ators should agree to the common format. As stateful
network protocols (e.g., TCP) introduce latency overheads,
recent latency-critical data stores [17], [25] generally use
stateless network protocols (e.g., UDP). Some data stores in
production environments also exploit UDP-based network
protocols to cut latency overheads for reading requests [4].
Considering that the goal of NetRS is to reduce the read
latency in data stores, we design the packet format of
NetRS in the context of UDP-based network protocols.
Moreover, network devices could parse packets more effi-
ciently with UDP protocol due to not maintaining per-flow
states. There are two design requirements for the packet
format. (i) It should be flexible and adapt to diverse replica
selection algorithms. (ii) It should keep the protocol over-
heads low.

NetRS packets are carried in the UDP payload. In order to
reduce bandwidth overheads of NetRS protocol, we use sep-
arate packet formats for requests and responses to carry dif-
ferent information. Fig. 2 shows the packet format of request
and response, respectively. The request and response packet
have the following common segments:

� RID (RSNode ID): [2 bytes] The ID of a NetRS opera-
tor, which works as the RSNode for a request or the
corresponding request of a response.

� MF (Magic Field): [6 bytes] A label that indicates the
type of a packet.

� RV (Retaining Value): [2 bytes] A value set by the
RSNode for a request, and the value in a response
will be the same as the value in its corresponding
request. An RSNode could exploit this segment to
collect request-level data. For example, an RSNodes
may set the retaining value of a request using the
timestamp of the request sent, and then the RSNode
will know the response latency of the request when
its corresponding response arrives. The usage of this
segment depends on the needs of the replica selec-
tion algorithm.

� Application Payload: [variable bytes] The content of a
request or a response.

The segment only in the request packet is as follows:

� RGID (Replica Group ID): [3 bytes] The ID of a replica
group. A NetRS selector obtains all replicas that can
handle the request by querying its local database of
replica groups with the RGID. The size of the data-
base is small because latency-critical distributed data
stores typically use consistent hashing to place data.
Using RGID make the headers of a packet fixed-
sized and irrelevant to the number of replicas. The
fixed-sized headers are more friendly for switches to
parse packets. In the case of server failures, clients
can inform the NetRS selector of the availability of
each corresponding replica through RGID. In the last
x bits of RGID, if the ith bit is 0, the NetRS selector
will exclude the ith replica for selection.

Segments only in the response packet are as follows:

� SM (Source Marker): [4 bytes] A value indicating the
network location from which a response comes.

� SSL (Server Status Length): [2 bytes] The length of the
piggybacked status of the server in a response.

� SS (Server Status): [variable bytes] The piggybacked
status of the server in a response.

5.2 NetRS Rules

The NetRS controller updates NetRS rules of each NetRS
operator based on the RSP. Each NetRS operator relies on its
NetRS rules to forward packets to the right place. The proc-
essing pipeline of a programmable switch includes two
stages: ingress processing and egress processing. NetRS rules
are a part of the ingress processing pipeline. Fig. 3 shows the
procedure of ingress processing according to NetRS rules.
Packets fall into 3 categories: non-NetRS packet, NetRS
request, and NetRS response. The switch uses the segment of
a magic field in a packet to determine the type of a packet. A
non-NetRS packet will directly enter the regular ingress proc-
essing pipeline and go towards its target server. A switch
only applies NetRS rules to NetRS packets, including NetRS
requests and responses.

The NetRS controller assigns a unique ID (a positive inte-
ger) to each NetRS operator and uses this ID to represent
each NetRS operator in the RSP. The NetRS operator stores

Fig. 2. Packet format of NetRS for the request and the response.

950 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 09,2022 at 01:42:27 UTC from IEEE Xplore. Restrictions apply.

its ID locally in the programmable switch. The segment of
RSNode ID in a NetRS packet stores the ID of a NetRS oper-
ator that works as the RSNode.

When a NetRS packet arrives, the programmable switch
will first match the packet’s RSNode ID segment. If the
RSNode ID is not in the switch’s local ID(s), then the switch
will forward the packet to the next hop towards the
RSNode. Otherwise, if the RSNode ID is the same as one of
the local ID(s), the switch will perform corresponding oper-
ations based on packet type. If the packet is a NetRS request,
it will be forwarded to the network accelerator which runs
the NetRS selector. The network accelerator will transform
the NetRS request to a non-NetRS packet, and send the
packet back to the switch (Section 5.3).

When a NetRS response arrives, the switch will first send
a clone of the packet to the network accelerator, and then
push the packet to the regular pipeline of ingress processing
with a modified magic field ofMmon, which also labels it as a
non-NetRS packet. The magic field of Mmon makes the
packet recognizable by NetRS monitors (Section 5.4). By
cloning the packet of NetRS response, we could avoid the
latency overhead of packet processing in accelerators.

As the RSP and traffic groups are agnostic to end-hosts,
clients of the data store are unable to determine the RSNode
ID for NetRS requests. With the network topology described
in Section 2, NetRS uses ToR switches to set the RSNode ID
for each NetRS request. Compared with switches of other
types, a ToR switch has extraNetRS rules for NetRS requests,
which could (i) match the source IP of a packet and get the
traffic group ID, and (ii) set the RSNode ID according to the
traffic group ID. For the NetRS response, the ToR switch has
NetRS rules to set the segment of source marker, which is
required by the NetRS monitor (Section 5.4). A NetRS
response does not need to obtain the RSNode ID from the
ToR switch because the server will copy the RSNode ID from
its corresponding request to the packet of response.

In order to enable the DRS for a traffic group (Section 4.1),
the NetRS controller just tells the corresponding NetRS oper-
ator to set an illegal RSNode ID (e.g., -1) to packets of the traf-
fic group. If a NetRS packet has an illegal RSNode ID, the
ToR switch will label it as a non-NetRS packet by setting
fðMdrsÞ to its magic field, where fð�Þ is an invertible function.

NetRS assumes requests of single packet. As the main
content of a reading request is the data’s name, which is

typically very small [7], a reading request can usually fit a
single packet well. NetRS is able to handle responses of
multiple packets. With NetRS, servers only need to label the
last packet in a response as a NetRS response and label
others as non-NetRS packets.

5.3 NetRS Selector

The NetRS selector is responsible for performing replica
selection and maintaining corresponding local information.

For a NetRS request, the NetRS selector determines the
target replica server for the packet based on local informa-
tion. When a NetRS request arrives from the co-located
switch, the NetRS selector will first extract the Replica
Group ID from the packet. Then the NetRS selector looks up
the local database to determine replica candidates and
selects a replica from the candidates. The NetRS selector
will rebuild the packet with the selected replica server and
the necessary retaining value. Moreover, while rebuilding
the packet, the NetRS selector also specifies the magic field
to fðMrespÞ; fðMrespÞ 6¼ Mreq;Mresp, whereMreq andMresp are
constant values that label the NetRS request and response,
respectively. The server will set the magic field in the last
packet of a response to f�1ðmÞ, where m is the magic field
value of the corresponding request. This mechanism guar-
antees that (i) the server marks the last packet in a response
as a NetRS response, only if its corresponding request had
flowed through a NetRS selector; (ii) the NetRS monitor
could recognize the response of a request using DRS (for a
packet with magic field Mdrs, the ToR switch will set the
source marker and modify the magic field to Mmon). Finally,
the NetRS selector will send the rebuilt packet to the switch.

For a NetRS response, the NetRS selector will update
local information according to the piggybacked information
in the packet and then abandon the packet.

5.4 NetRS Monitor

The NetRS monitor collects traffic statistics of each traffic
group. We deploy the NetRS monitor as a bunch of match-
action rules in egress pipelines of the ToR switch.

We should answer two questions for designing the NetRS
monitor. First, when should the data collection happen (the
time point that a packet enters or leaves the network)? Sec-
ond, what kind of packets (requests or responses) should the
NetRS monitor concern? In NetRS, we choose to collect data
when a response leaves the network. The reasons are as fol-
lows. (i) A request does not carry the replica selected by
NetRS when it first enters the network. (ii) For a ToR switch,
requests leaving the network may be of any traffic group,
so are responses that first enters the network. Considering
that each traffic group requires separate match-action rules
(counters), collecting such packets introduces lots of burdens
to a switch. In comparison, responses leaving the network
are of traffic groups associatedwith the rack.

TheNetRSmonitor filters packets based on themagic field.
NetRS rules ensure that the NetRS monitor can recognize
responses of the data store. When a response enters the egress
pipeline of a ToR switch, the NetRS monitor first determines
the traffic group based on its destination IP. Then, themonitor
updates the corresponding counter according to the source
marker. Each ToR switch has a unique source marker that

Fig. 3. NetRS rules within ingress pipelines of a programmable switch.

SU ET AL.: IN-NETWORK REPLICA SELECTION FRAMEWORK FOR LATENCY-CRITICAL DISTRIBUTED DATA STORES 951

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 09,2022 at 01:42:27 UTC from IEEE Xplore. Restrictions apply.

depends on its network location. A source marker contains
two components: the pod ID and the rack ID. A ToR switch
could determine whether a packet is from the same pod and/
or the same rack by comparing the source marker in the
packet to the local one.

6 EVALUATION

We conduct simulation-based experiments to extensively
evaluate the NetRS framework. We do not evaluate with
NetRS with a small-scale prototype because NetRS concen-
trates on the difficulties in performing in-network replica
selection in the context of datacenter-scale systems. In order
to conduct large-scale experiments, the common practice is
using simulations.

6.1 Simulation Setup

In our experiments, we use the simulator from C3 [9], which
simulates clients and servers of a data store. In order to eval-
uate the NetRS framework, we extend the simulator to sim-
ulate network devices. The simulated network is a 16-ary
fat-tree (3-tier) [21] containing 1024 end-hosts. Each switch
has one network accelerator attached to it.

We set major parameters in our evaluation based on the
experimental parameters in C3 [9]. The service time of a
server follows exponential distribution while the mean
value (tkv) is 4 ms. Each server could process NpðNp ¼ 4Þ
requests in parallel. The performance of each server fluctu-
ates independently with an interval of 50 ms. The fluctua-
tion follows the bimodal distribution [26] with the range
parameter d ¼ 4 (in each fluctuation interval, the mean ser-
vice time could be either tkv or tkv=d with equal possibility).
Data objects are distributed across NsðNs ¼ 100Þ servers
according to consistent hashing with a replication factor of
3. There are 200 workload generators in total, and each
workload generator creates reading requests based on the
Poisson process, which could approximate the request
arrival process of Web applications with reasonably small
errors [27]. For a request, the workload generator chooses
an accessing data object out of 100 million data objects
according to the Zipfian distribution (the Zipf parameter is
0.99). For each experiment, the data store receives 6 million
requests. By default, there are 500 clients sending requests
without the demand skewness (in other words, the number
of requests issued by each client is evenly distributed).

We set the parameters of network devices based on the
measurements of real-world programmable switches and
network accelerators in the paper of IncBricks [17]. Specifi-
cally, the RTT between a switch and its attached network
accelerator is 2.5us. We consider using low-end network
accelerators. Each accelerator has 1 core and the processing
time is 5us. The network latency between two switches that
are directly connected is 30us.

We perform the simulation with the above parameters by
default, unless otherwise noted. Clients and servers are ran-
domly deployed across end-hosts [28], and each host only
has one role [29]. We repeat every experiment 3 times with
different deployments of clients and servers. We compare
the following schemes (in all schemes, RSNodes select rep-
lica using the C3 algorithm [9], which is state-of-the-art). C3
aims to minimize the product of queue length and service

time across each server. Each RSNode estimates the status
of a server according to the queue length and the service
time piggybacked in responses, the number of the server’s
pending requests from the RSNode (prs), and the number of
independent RSNodes in the system. C3 tries to avoid the
“herd behavior” of RSNodes by ranking replicas accounting
prs. C3 penalizes long queues by amplifying the estimated
queue length of each server with a cubic function.

� CliRS: A commonly used replica selection scheme in
latency-critical data stores [5], [6], [30], [31]. With
CliRS, clients work as RSNodes and perform replica
selection for requests.

� CliRS-R95: For primary requests, CliRS-R95 is the
same as CliRS. However, if a primary request has
been outstanding for more than the 95th-percentile
expected latency, the client will send a redundant
request [8].

� NetRS-ToR: Using the NetRS framework for replica
selection with a straightforward ToR-based RSP,
which specifies the NetRS operator co-located with
the rack’s ToR switch as the RSNode for requests
from the rack.

� NetRS-ILP: Using the NetRS framework for replica
selection with an RSP determined by solving the ILP
problem of RSNodes placement.

� NetRS-ADP: Using the NetRS framework for replica
selection with a ToR-based RSP initially, and then
the NetRS controller adaptively optimizes the RSP
using Algorithm 1.

� Oracle: Each client selects replica with the minimal
ts � qs, where ts and qs is the service time and queue
length of a server, respectively. Oracle is only a theo-
retical scheme. Clients using Oracle are able to
obtain the instantaneous ts and qs of each server.

6.2 Results and Analysis

This section provides experimental results in a variety of
scenarios. Under open-loop workloads, considering that the
system throughput is fixed, we concentrate on the response
latency of system. By default, the aggregate arriving rate of
requests (A) corresponds the 90 percent system utilization

(t
kvA

NsNp
), which is low considering the perfermance fluctuation

(2
1þd

tkvA
NsNp

¼ 36%). Under closed-loop workloads, we evaluate

the throughput of system with different concurrency levels.
In our deployment, U ¼ 25 and E ¼ 10 percent A, where U
is the maximum NetRS’s utilization allowed for an accelera-
tor, and E is the maximum amount of extra hops.

6.2.1 Response Latency Under Open-Loop Workloads

Oracle outperforms other schemes in reducing response
latency. It is because, compared with other schemes, Oracle
uses the most recent status of servers. Clients are able to
avoid selecting poorly-performing servers and reduce the
occurrence of “herd behavior”.

In most cases, using CliRS-R95 will result in a dramatic
increase in response latency. It is because the extra loads of
redundancy will make a small portion of servers over-
loaded due to the skewed workloads. Fig. 4 and 5 do not
show bars exceeding the respective latency thresholds.

952 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 09,2022 at 01:42:27 UTC from IEEE Xplore. Restrictions apply.

When no unexpected event occurs, the latency with
NetRS-ADP is comparable to the latency with NetRS-ILP.

Impact of the Number of Clients. Fig. 4 shows the response
latency comparison of all schemes when the number of cli-
ents ranges from 100 to 700.We observe the following things.
(i) NetRS-based schemes outperform CliRS, and NetRS-ILP
shows the best performance. Compared with CliRS, NetRS-
ILP reduces the mean latency by 34.9-50.3 percent and the
99th latency by 35.7-56.3 percent. Compared with NetRS-
ToR, NetRS-ILP reduces the mean latency by 34.4 percent
and the 99th latency by 34.1 percent on average. (ii) With
CliRS, both the mean and tail latency increase as the number
of clients grows. However, the response latency roughly
remains unchanged with NetRS-based schemes regardless
of changes in the number of clients. The underlying reason is
that, with NetRS-based schemes, the number of RSNodes is
irrelevant to the number of clients. Since each client works
as an RSNode with CliRS, these experiments also validate
our analysis that more independent RSNodes lead to worse
replica selection and performance penalties.

Impact of the System Utilization. Fig. 5 shows the impact of
the system utilization on response latency for all schemes of
replica selection. We run the experiments with the system

utilization (t
kvA

NsNp
) ranging from 30 to 90 percent. Compared

with CliRS, NetRS-ILP reduces the mean latency by 15.5-49.4
percent and reduces the 99th latency by 9.8-54.7 percent.
Compared with NetRS-ToR, NetRS-ILP reduces the mean
and 99th latency by 15.4-37.2 percent and 9.6-37.7 percent,
respectively. We make the following observations. (i) With
all schemes, the response latency increases as the system uti-
lization grows. It is because the higher utilization suggests
the more severe contention of resources and the longer
queueing latency, which none of these schemes could avoid.
(ii) Compared with CliRS, NetRS-based schemes introduce
more reductions in response latency in the region of higher
utilization. The underlying reason is that the severe conten-
tion of resources will amplify the impact of bad replica selec-
tion on the response latency. (iii) CliRS-R95 outperforms

other schemes in cutting the tail latency when the utilization
is low. With low utilization, the impact of extra loads due to
issuing redundant requests is negligible.

Impact of Unexpected Workload Changes. Fig. 6 shows the
response latency comparison of different schemes when
unexpected workload changes occur (the system utilization
increases from 50 to 90 percent). While using NetRS-ILP, the
NetRS controller enables degraded replica selection for some
traffic groups so that the unexpected workload changes will
not cause any constraints violations. While using NetRS-
ADP, the NetRS controller initializes the RSP with a ToR-
based RSP and optimizes the RSP according to Algorithm 1.
Comparedwith CliRS, NetRS-ADP reduces themean latency
by 47.5 percent and the 99th latency by 52.8 percent. Com-
pared with NetRS-ILP, NetRS-ADP reduces the mean
latency by 16.2 percent and the 99th latency by 25.1 percent.
NetRS-ADP outperforms NetRS-ILP because it avoids con-
straints violationswithout enablingDRS.

Impact of NetRSOperator Failures. Fig. 7 depicts the response
latency comparison of two approaches to handle failures of
NetRS operators thatwork as RSNodes. (i) ENABLE-DRS ena-
bles DRS for traffic groups that using the failed operator
as RSNode. (ii) ALTER-RSP find an alternative RSP using
Algorithm 2. For experiments using the NetRS-based scheme,
they start with an RSP determined by solving the ILP prob-
lem. Then, after clients have issued about 1/5 of all requests, a
NetRS operator that works as an RSNodes fails. Compared
with CliRS, the NetRS-based scheme reduces the mean and
99th response latency whatever the approach to dealing with
failures. Compared with ENABLE-DRS, ALTER-RSP reduces
the mean and 99th latency by 18.8 and 20.3 percent, respec-
tively. The performance gain of using ALTER-RSP is due to
not relying on DRS for traffic groups that use the failed opera-
tor as RSNodes.

Impact of Network Congestion. Fig. 8 shows the response
latency comparison of different schemes under network con-
gestion. In the experiments, the latency of a switch can be 3ms
due to congestion. The congestion status of a switch changes
dynamically. We compare an extra scheme, ProxyRS, which
uses a centralized end-host as the RSNode. In this scenario,
NetRS can also significantly cut the latency both on average
and in the tail. Compared with ProxyRS, using NetRS-ILP
reduces the 99th latency by 14.4 percent, the average latency

Fig. 4. The comparison of latency with varying number of clients.

Fig. 5. The comparison of latency with varying system utilization.

Fig. 6. The comparison of latency with workload changes.

Fig. 7. The comparison of latency with NetRS operator failures.

SU ET AL.: IN-NETWORK REPLICA SELECTION FRAMEWORK FOR LATENCY-CRITICAL DISTRIBUTED DATA STORES 953

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 09,2022 at 01:42:27 UTC from IEEE Xplore. Restrictions apply.

by 34.4 percent. ProxyRS is able to provide comparable tail
latency with NetRS-ILP due to selecting better replicas. How-
ever, since requests should go through long network paths,
using ProxyRSmakes themean latency higher.

Impact of Accelerator Utilization. Fig. 9 shows the impact of
the accelerator utilization on response latency. In the experi-
ments, we use the NetRS-ADP scheme of replica selection
with accelerator utilization ranging from 0.0 to 25 percent.
The NetRS-ADP turns into CliRS when the utilization is
0.0 percent. We can observe that the latency is lower with
higher accelerator utilization at first, however, further
improving the utilization doesn’t help reduce the latency. It
is because, an accelerator could accommodate more RSNo-
des with a higher utilization threshold, which helps to
reduce the number of RSNodes in the system. However,
when there are only a few RSNodes, further reducing RSNo-
des has negligible impacts on the response latency.

6.2.2 Throughput Under Closed-Loop Workloads

Fig. 10 shows the throughput comparison of different rep-
lica selection schemes when the concurrency level of work-
load varies from 200 to 800. Compared with CliRS, NetRS-
ADP improves the throughput by 37.4-56.2 percent. We
observe that better replica selection has a more significant
impact on throughput at lower concurrency levels. In order
to improve the throughput, the system has to make full use
of available replicas. A higher concurrency level implies
that there are more requests in the system, which makes it
easier to keep all corresponding replicas busy. Hence, at
higher concurrency levels, NetRS-ADP and Oracle have
fewer advantages over CliRS.

In summary, (i) NetRS could effectively improve the per-
formance of data stores compared with selecting replica by
clients; (ii) a proper RSNodes placement plays an important
role in the performance improvement of NetRS; (iii) redun-
dant requests are only suitable for scenarios of low utiliza-
tion; (iv) NetRS is robust against unexpected events and
network congestion.

7 RELATED WORK

Tolerating Performance Variability. The approaches to dealing
with the time-varying performance of servers fall into two

categories: redundant requests and replica selection. On one
hand, redundant requests are used pervasively to reduce
response latency. Google proposes to reissue requests to
reduce latency and use cross-server cancellations to reduce
redundancy overheads [8]. Vulimiri et al. [32] suggest that the
use of redundant requests is a trade-off between response
latency and system utilization. Shah et al. [33] and Gardner
et al. [34] provide theoretical analyses on using redundant
requests to reduce latency. On the other hand, replica selection
is also an indispensable part of distributed systems.
Mitzenmacher [35] proposes the “power of two choices” algo-
rithm,which sends a request to the serverwith a shorter queue
out of two randomly chosen servers. Dynamic Snitching [5] is
the default replica selection strategy of Cassandra, which
selects replica based on the history of reading latencies and I/
O loads. C3 [9] is the state-of-the-art algorithm of replica selec-
tion, which could effectively reduce tail latency compared
with other algorithms. These works are orthogonal to NetRS.
NetRS focuses on improving the effectiveness of replica selec-
tion via performing replica selection in data center network.

In-Network Computing. In-network computing is widely
used to enhance the performance of data stores. NetC-
ache [36] caches hot data within programmable switches to
balance loads of backend servers. IncBricks [17] builds an
in-network cache system that works as a cache layer for
key-value stores. Different from NetRS, which deals with
the performance fluctuation of servers, these works leverage
in-network computing to address the problem of workload
skewness in data stores.

8 CONCLUSION

This paper presents NetRS, a framework that enables in-
network replica selection for latency-critical data stores.
NetRS exploits programmable switches and network acceler-
ators to aggregate tasks of replica selection. Compared with
client-based replica selection, NetRS significantly reduces the
response latency. NetRS could support various replica selec-
tion algorithms with the flexible format of NetRS packet and
the customized processing pipelines of each network device.
We formalize the problem of RSNodes placement with ILP in
the context of data center networks. We also propose algo-
rithms to quickly find an approximately optimal solution to
this NP-complete placement problem. Moreover, NetRS is
able to handle exceptions, e.g., failures of network devices.

ACKNOWLEDGMENTS

This work was supported by NSFC Grant No. U1705261,
61772222, and 61772212, Shenzhen Research Funding of
Science and Technology - Fundamental Research (Free explo-
ration) JCYJ20170307172447622, NSFC Grant No. 61821003,

Fig. 8. The comparison of latency with network congestion.

Fig. 9. The comparison of latency with varying accelerator utilization.

Fig. 10. The comparison of throughtput with varying concurrency levels.

954 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 09,2022 at 01:42:27 UTC from IEEE Xplore. Restrictions apply.

and 61832007, National Key R&D Program of China No.
2018YFB10033005, Hubei Province Technical Innovation
Special Project (2017AAA129), Wuhan Application Basic
Research Project (2017010201010103), Project of Shenzhen
Technology Scheme JCYJ20170307172248636, Fundamental
Research Funds for the Central Universities. This article was
presented in part at the IEEE 38th International Conference on
Distributed Computing Systems, Vienna, Austria, Jul. 2–6,
2018.

REFERENCES

[1] H. Xiao et al., “Towards web-based delta synchronization for
cloud storage services,” in Proc. 16th USENIX Conf. File Storage
Technol., 2018, pp. 155–168.

[2] Z. Li et al., “Efficient batched synchronization in dropbox-like
cloud storage services,” in Proc. ACM/IFIP/USENIX Int. Conf. Dis-
trib. Syst. Platforms Open Distrib. Process., 2013, pp. 307–327.

[3] Z. Li et al., “Towards network-level efficiency for cloud storage
services,” in Proc. ACM Internet Meas. Conf., 2014, pp 118–128.

[4] R. Nishtala et al., “Scaling Memcache at Facebook,” in Proc. USE-
NIX NSDI, 2013, pp. 385–398.

[5] “Apache cassandra database,” 2017. http://cassandra.apache.org
[6] G. DeCandia et al., “Dynamo: Amazon’s highly available key-

value store,” in Proc. 21st ACM SIGOPS Symp. Operating Syst.
Princ., 2007, pp. 205–220.

[7] B. Atikoglu et al., “Workload analysis of a large-scale key-value
store,” in Proc. ACM SIGMETRICS Perf. Eval. Rev., 2012, pp. 53–64.

[8] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM,
vol. 56, no. 2, pp. 74–80, 2013.

[9] L. Suresh et al., “C3: Cutting tail latency in cloud data stores via
adaptive replica selection,” in Proc. 12th USENIX Conf. Netw. Syst.
Des. Implementation, 2015, pp. 513–527.

[10] Y. Hua, “Cheetah: An efficient flat addressing scheme for fast
query services in cloud computing,” in Proc. 35th Annu. IEEE Int.
Conf. Comput. Commun., 2016, pp. 1–9.

[11] C. Li, D. Feng, Y. Hua, and F. Wang, “A high-performance and
endurable SSD cache for parity-based RAID,” Frontier Comput.
Sci., vol. 13, no. 1, pp. 16–34, 2019.

[12] Y. Su, D. Feng, Y. Hua, Z. Shi, and T. Zhu, “NetRS: Cutting
response latency in distributed key-value stores with in-network
replica selection,” in Proc. IEEE 38th Int. Conf. Distrib. Comput.
Syst., 2018, pp. 143–153.

[13] “Barefoot tofino: P4-programmable ethernet switch ASICs,” 2017.
https://barefootnetworks.com/products/brief-tofino/

[14] “Octeon Multi-Core MIPS64 Processor Family,” 2017. https://
www.cavium.com/octeon-mips64.html

[15] “Netronome NFE-3240 Family appliance adapters,” 2017. https://
www.netronome.com/products/nfe/

[16] D. Kreutz, F. M. V. Ramos, P. E. Ver�ıssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[17] M. Liu et al., “IncBricks: Toward in-network computation with an
in-network cache,” in Proc. 22nd Int. Conf. Architect. Support Pro-
gram. Lang. Operating Syst., 2017, pp. 795–809.

[18] J. Li et al., “Just say no to paxos overhead: Replacing consensus
with network ordering,” in Proc. 12th USENIX Conf. Operating
Syst. Des. Implementation, 2016, pp. 467–483.

[19] J. Li, E. Michael, and D. R. K. Ports, “Eris: Coordination-free con-
sistent transactions using in-network concurrency control,” in
Proc. 26th Symp. Operating Syst. Princ., 2017, pp. 104–120.

[20] A. Singh et al., “Jupiter rising: A decade of CLOS topologies and
centralized control in Google’s datacenter network,” Commun.
ACM, vol. 59, no. 9, pp. 88–97, 2016.

[21] M. Al-Fares , A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” in ACM SIGCOMM Comput.
Commun. Rev., vol. 38, pp. 63–74, 2008.

[22] “Gurobi optimizer: State-of-the-art mathematical programming
solver,” 2017. http://www.gurobi.com/products/gurobi-optimizer

[23] “CPLEX Optimizer: High-performance mathematical program-
ming solver,” 2017. https://www.ibm.com/analytics/data-
science/prescriptive-analytics/cplex-optimizer

[24] P. Gill, N. Jain, and N. Nagappan, “Understanding network fail-
ures in data centers: Measurement, analysis, and implications,” in
Proc. ACM SIGCOMMConf., 2011, pp. 350–361.

[25] X. Li et al., “Be fast, cheap and in control with SwitchKV,” in Proc.
13th Usenix Conf. Netw. Syst. Des. Implementation, 2016, pp. 31–44.

[26] J. Schad, J. Dittrich, and J.-A. Quian�e-Ruiz, “Runtime measure-
ments in the cloud: Observing, analyzing, and reducing variance,”
Proc. VLDB Endowment, vol. 3, no. 1–2, pp. 460–471, 2010.

[27] D. Meisner et al., “Power management of online data-intensive serv-
ices,” inProc. 38th Annu. Int. Symp. Comput. Archit., 2011, pp. 319–330.

[28] T. Benson, A. Akella, and D. A. Maltz, “Network traffic character-
istics of data centers in the wild,” in Proc. 10th ACM SIGCOMM
Conf. Internet Meas., 2010, pp 267–280.

[29] A. Roy et al., “Inside the social network’s (datacenter) network,”
ACMSIGCOMMComput. Commun. Rev., vol. 35, pp. 123–137, 2015.

[30] “Project voldemort: A distributed database,” 2017. http://www.
project-voldemort.com/voldemort

[31] “Couchbase data platform: Couchbase server,” 2017. https://
www.couchbase.com/products/server

[32] A. Vulimiri et al., “Low latency via redundancy,” in Proc. 9th ACM
Conf. Emerg. Netw. Experiments Technol., 2013, pp. 283–294.

[33] N. Shah, K. Lee, and K. Ramchandran, “When do redundant
requests reduce latency ?” in Proc. 51st Annu. Allerton Conf. Com-
mun. Control Comput., 2013, pp. 731–738.

[34] K. Gardner et al., “Reducing latency via redundant requests: Exact
analysis,” in Proc. ACM SIGMETRICS Int. Conf. Meas. Model. Com-
put. Syst., 2015, pp. 347–360.

[35] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 10,
pp. 1094–1104, Oct. 2001.

[36] X. Jin et al., “NetCache: Balancing key-value stores with fast in-
network caching,” in Proc. 26th Symp. Operating Syst. Princ., 2017,
pp. 121–136.

Yi Su received the BS degree in computer sci-
ence from the Huazhong University of Science
and Technology (HUST), China, in 2012. He is
currently wirking toward the PhD degree at the
Wuhan National Laboratory for Optoelectronics,
Huazhong University of Science and Technology.
He has several publications in major journals and
international conferences, including Journal of
Parallel and Distributed Computing, ICDCS, and
ICPP. His research interests include cloud stor-
age systems, big data processing systems.

Dan Feng (Member, IEEE)received the BE, ME,
and PhD degrees in computer science and tech-
nology, from the Huazhong University of Science
and Technology (HUST), China in 1991, 1994, and
1997, respectively. She is currently a professor and
the dean of the School of Computer Science and
Technology, HUST. Her research interests include
computer architecture, massive storage systems,
and parallel file systems. She has more than 100
publications in major journals and international
conferences, including IEEETransactions onCom-

puters, IEEE Transactions on Parallel & Distributed Systems, ACM Trans-
actions onStorage, FAST, USENIXATC, ICDCS,HPDC, SC, ICS, IPDPS,
and ICPP. She has served as the program committees of multiple interna-
tional conferences, including SC 2011, 2013, MSST 2012, 2015. She is a
member of ACM.

Yu Hua (Senior Member, IEEE) received the BE
and PhD degrees in computer science from the
WuhanUniversity, China, in 2001 and 2005, respec-
tively. He is currently a full professor with the
Huazhong University of Science and Technology,
China. His research interests include computer
architecture, cloud computing, and network storage.
He has more than 100 papers to his credit in major
journals and international conferences including
IEEETransactions onComputers (TC), IEEETrans-
actions onParallel andDistributedSystems (TPDS),

USENIX ATC, USENIX FAST, INFOCOM, SC and ICDCS. He has been on
the program committees of multiple international conferences, including
USENIX ATC, RTSS, INFOCOM, ICDCS, MSST, ICNP and IPDPS. He is a
seniormember of theACMandCCF, and amember of USENIX.

SU ET AL.: IN-NETWORK REPLICA SELECTION FRAMEWORK FOR LATENCY-CRITICAL DISTRIBUTED DATA STORES 955

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 09,2022 at 01:42:27 UTC from IEEE Xplore. Restrictions apply.

http://cassandra.apache.org
https://barefootnetworks.com/products/brief-tofino/
https://www.cavium.com/octeon-mips64.html
https://www.cavium.com/octeon-mips64.html
https://www.netronome.com/products/nfe/
https://www.netronome.com/products/nfe/
http://www.gurobi.com/products/gurobi-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
http://www.project-voldemort.com/voldemort
http://www.project-voldemort.com/voldemort
https://www.couchbase.com/products/server
https://www.couchbase.com/products/server

Zhan Shi received the BS and master’s degree in
computer science, and the PhD degree in com-
puter engineering from the Huazhong University
of Science and TechnologyHUST, China. He is
working with the Huazhong University of Science
and Technology (HUST) in China, and is an asso-
ciate researcher inWuhan National Laboratory for
Optoelectronics. His research interests include
storage management, distributed storage system,
and cloud storage.

Tingwei Zhu received the BE degree in com-
puter science and technology from the Huazhong
University of Science and Technology (HUST),
Wuhan, China, in 2012. He is currently working
toward the PhD degree in computer architecture
in HUST. His interests include software-defined
networking and distributed storage systems. He
has several publications in major journals and
international conferences, including Transactions
on Networking, IWQoS, ICPP, and Journal of
Network and Computer Applications.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

956 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 10, NO. 2, APRIL-JUNE 2022

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 09,2022 at 01:42:27 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

