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Abstract—In order to efficiently achieve fault tolerance in
cloud computing, large-scale data centers generally lever-
age remote backups to improve system reliability. Due
to long-distance and expensive network transmission, the
backups incur heavy communication overheads and poten-
tial errors. To address this important problem, we propose
an efficient remote communication service, called Neptune.
Neptune efficiently transmits massive data between long-
distance data centers via a cost-effective filtration scheme.
The filtration in Neptune is interpreted as eliminating redun-
dancy and compressing similarity of files, which are gen-
erally studied independently in the existing work. In order
to bridge their gap, Neptune leverages chunk-level dedu-
plication to eliminate duplicate files and uses approximate
delta compression to compress similar files. Moreover, in
order to reduce the complexity and overheads, Neptune
uses a locality-aware hashing to group similar files and pro-
poses shortcut delta chains for fast remote recovery. We
have implemented Neptune between two data centers and
their distance is more than 1200 km via a 2 Mb/s network
link. We examine the Neptune performance using real-
world traces of Los Alamos National Laboratory (LANL),
EMC, and Campus collection. Compared with state-of-the-
art work, experimental results demonstrate the efficiency
and efficacy of Neptune.

Index Terms—Backup systems, cloud storage, compres-
sion, reliability.

I. INTRODUCTION

M ANY INDUSTRIAL cloud computing applications
require high degree of reliability and availability; hence,

data centers and their backups are usually built in a geographi-
cally dispersed manner, to prevent failures from disasters, such
as earthquakes, tsunami, and hurricanes. The unpredictable
occurrence of disasters may destroy the entire datasets stored
in a data center, e.g., as a result of severe network outages dur-
ing super storm Sandy. Therefore, large-scale cloud networks
generally rely on regular remote backups to protect against
the disasters. In general, long-distance network connectivity is
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expensive and/or bandwidth constrained, making remote back-
ups for massive data very costly in terms of both network
bandwidth and backup time.

An intuitive and direct solution is to detect data redun-
dancy in the backup data stream to reduce the amount of
data actually transmitted. It is worth noting that, from a
systems-implementation perspective, it is important to distin-
guish between the managed and the unmanaged redundancy.
The former is purposely introduced by the system to support
and improve availability, reliability, and load balance. The lat-
ter, however, is a property of the data itself and thus invisible
to the system. Due to its consumption of substantial system
resources, the unmanaged redundancy can become a potential
performance bottleneck in cloud systems. The cost effective-
ness and efficiency of remote backup lie in the significant
improvements on the effective backup throughput, which can
be achieved by transmitting data difference in a compressed
manner.

Compression techniques are widely used in computer net-
works and enterprise clouds to increase the efficiency of data
transfers and reduce bandwidth requirements. Most techniques
focus on the problem of compressing individual files or data
streams. However, files in the enterprise clouds are often repli-
cated and frequently modified. Hence, the enterprise clouds are
full of many redundant data. For example, the receiver in a
data transfer already contains an earlier version of the transmit-
ted file or similar files, or multiple similar files are transmitted
together. These redundant data can be deduplicated or delta
compressed. Delta compression techniques are concerned with
efficient file transfer over a slow communication link in the case
where the receiving party already has a similar file.

Since the network bandwidth across cloud systems is often
a performance-limiting factor, existing systems leverage data
reduction techniques to reduce the unmanaged redundancy and
improve the effective throughput. The most commonly used
techniques include chunk-level deduplication and delta com-
pression, whose goal is to prevent redundant data from being
transferred. Deduplication schemes split files into multiple
chunks (say, generally 8 kB size), where a hash signature, called
a fingerprint, uniquely identifies each chunk. By checking their
fingerprints, duplicate chunks can be removed, while avoiding
a byte-by-byte comparison and replacing identical data regions
with references. Moreover, the delta compression compresses
similar regions by calculating their differences. The efficiency
of remote backups depends on exploring and exploiting the
property of redundancy.

The data filtration in Neptune needs to compute a sketch
of each nonduplicate chunk as a similarity measure. Sketches
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have the property that if two chunks have the same sketch,
they are likely near duplicates. These can be used during back-
ups to identify similar chunks. Moreover, instead of using a
full index mapping sketches to chunks, Neptune loads a cache
with sketches from a previous stream to obtain close compres-
sion performance to a full sketch index. For a backup, identical
chunks are deduplicated, and nonduplicate chunks are delta
compressed relative to similar chunks that already reside at
the remote repository. We then compress the remaining bytes
and transfer across the WAN to the repository. Specifically, this
paper has the following contributions.

1) Comprehensive Filtration: Neptune offers compre-
hensive filtration between the source and the destination of a
remote backup. In the source, Neptune eliminates duplicate
files and compresses similar files. The remote transmission
leverages a similarity detection technique to obtain significant
bandwidth savings. Neptune goes far beyond the simple com-
bination of system-level deduplication and application-level
similarity detection. While the former can deduplicate exact-
matching chunk-level data well, it fails to deal with files from
the application’s viewpoint, since the low-level chunks can-
not explicitly express the properties of application-level data.
The latter only concentrates on the files themselves from the
application’s viewpoint, failing to capture and leverage the
system-level characteristics, such as metadata and access pat-
terns. Neptune, in fact, bridges the gap between them and
delivers high performance.

2) Cost-Effective Remote Backups: During remote
backups, Neptune alleviates computation and space overheads.
First, to reduce the scope of processing data, Neptune lever-
ages semantic-aware groups using locality-sensitive hashing
(LSH) [1] that has a complexity of O(1) and light space over-
head. In order to improve the efficiency of delta compression,
Neptune slightly looses the selection of base fingerprint by
using top-k, rather than only one similar fingerprint in conven-
tional approaches. The top-k approximate delta compression
can identify more chunks to be delta compressed, thus, sig-
nificantly reducing the entire network overheads. Moreover,
in order to support efficient remote recovery, we propose a
shortcut scheme for delta chains. The shortcut scheme allows
any given version to be restored by accessing at most two
files from the version chain. Neptune hence avoids extra com-
putation latency on the intermediate deltas and supports fast
recovery.

3) Prototype Implementation and Real-Life Evaluation:
We have implemented all components of the Neptune architec-
ture. We built a prototype to compute fingerprints and features,
which are stored together in caching units, called storage
containers. We used 8-kB chunk size and 4.5-MB contain-
ers holding chunks, fingerprints, and features. We examine the
performance of Neptune using multiple real-world datasets,
including Los Alamos National Laboratory (LANL), EMC, and
Campus collection. We also compare Neptune with state-of-
the-art work, including EndRE [2], cluster-based deduplica-
tion (CBD) [3], and EMC stream-informed delta compression
(SIDC) [4].

This paper is organized as follows. Section II presents
the related work. Section III presents the Neptune design.

We present the experiment setup and evaluation results in
Section IV. We conclude our paper in Section V.

II. RELATED WORK

Deduplication schemes split files into multiple chunks. Each
chunk is uniquely identified by a hash signature, called a finger-
print. By checking their fingerprints, duplicate chunks can be
removed while avoiding a byte-by-byte comparison and replac-
ing identical data regions with references. Recent efforts [5], [6]
leverage locality-aware grouping strategy to chunk-level dedu-
plication, which aggregate similar and correlated files into the
same or adjacent groups. This strategy can narrow the scope
of the files to be probed, but they are costly in capturing the
semantics from contents.

Network-wide redundancy elimination is an important
research topic and has received many attentions from both
academia and industry. EndRE [2] uses an adaptive SampleByte
algorithm for fingerprinting and an optimized data structure
for reducing cache memory overhead. SIDC [4] proposes an
architecture that uses SIDC to already existing deduplication
systems without the need of persistent indexes. CBD [3] exam-
ines the tradeoffs between stateless data routing approaches
with low overhead and stateful approaches with high overhead
but being able to avoid imbalances.

Early efforts to reduce the amount of data to be transmit-
ted mainly leverage incremental backup which only detects
changes at the granularity of a file. Delta compression trans-
mits the data in the form of differences between current version
and the replicated version [7], [8]. The general-purpose delta
compression tools are based on the Lempel–Ziv approach [9].
Examples of such tools are vdelta and its newer variant vcd-
iff [10], the Xdelta compressor [8], and the zdelta tool [7]. In
practice, delta compression suffers from the high overheads in
terms of computation and network bandwidth. The reason is
that delta compression needs to compute the difference between
original and new versions, which generally exists in different
locations. Hence, the deltas from the chunk-level compression
fail to identify similar files in an efficient manner [8].

In order to improve the performance of data synchroniza-
tion (sync) operation in the cloud, a novel metric, called traffic
usage efficiency (TUE) [11], is proposed to quantify the traffic
usage efficiency and offer cost-efficient cloud storage services.
In order to reduce data sizes in the storage systems, redundancy
elimination at the block level (REBL) [12] makes use of com-
pression, duplicate block suppression, and delta encoding, as a
hybrid scheme, to delete redundant data in a cost-efficient man-
ner. In order to obtain bandwidth efficiency, tiered approach for
eliminating redundancy (TAPER) [13] can synchronize many
data across geographically distributed replica locations with-
out the need of prior knowledge of the replica state. Volley
[14] performs automatic data placement across geographically
distributed data centers while reducing WAN bandwidth costs.
Cimbiosys [15] offers a replication platform to allow each
device to define its own content-based filtering criteria. By
exploiting the skewness in the communication patterns, a trade-
off between improving fault tolerance and reducing bandwidth
usage is obtained in [16]. Moreover, update-batched delayed
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synchronization (UDS) [17] is proposed to batch updates from
clients and preserve rapid file synchronization, thus efficiently
reducing the maintenance traffic overhead.

Unlike existing work, Neptune judiciously implements the
deduplication in local servers and proposes a novel approxi-
mate delta compression to obtain significant bandwidth savings.
Neptune also leverages shortcut delta chains to support fast
remote recovery. Moreover, compared with our previous work
[18], the main contributions of this paper include the resem-
blance detection, delta chains, delta compression, and recovery,
as well as the performance evaluation using real-world indus-
trial datasets.

III. NEPTUNE DESIGN

In a communication scenario, both sender and receiver con-
tain a reference file that is similar to the transmitted file. We
only need to transmit the difference (or delta) between two files
to reduce communication overheads. There are growing inter-
ests for supporting redundancy elimination as a network-wide
service [19]. The network service can reduce link loads and
increase effective network capacity, thus, efficiently meeting
the needs of handling the increasing number of bandwidth-
intensive applications. In practice, it is difficult and inefficient
to leverage existing single-point (one server) redundancy elim-
ination solutions for enterprise clouds due to the lack of the
network-aware design. The proposed Neptune is a practical
and efficient scheme for network-wide redundancy elimination,
which meanwhile improves the utilization of available network
resources.

A. Resemblance Detection

In order to delta compress chunks, we need to identify the
identical and similar chunks that have been already transmit-
ted. A resemblance sketch can identify the features of a chunk.
The sketch-based schemes have been widely used in real-world
applications. The sketch will not change even if small variations
exist in the data. In order to compute the features in an efficient
manner, we use a rolling hash function over all overlapping
small regions of data (e.g., 32-byte windows). We choose the
maximal hash value as the feature. By using multiple different
hash functions, Neptune generates multiple features. In general,
if the chunks have one or more features (maximal values) in
common, they are likely to be very similar. In the meantime,
small changes to the data are unlikely to perturb the maximal
values.

In practice, in order to generate multiple independent fea-
tures, we use the Rabin fingerprint over rolling windows w of
chunk C and compare the fingerprint FP against a mask. We
then permute the Rabin fingerprint to generate multiple values
with function βi. The function leverages randomly generated
multiplier with 32-byte windows and adder values m and a.

In general, if the maximal values are not changed, we
can achieve a resemblance match. We hence group multiple
features together to build a “super-feature.” The super-feature
value serves as a representation of the underlying feature
values. It has the salient property that if two chunks have an

identical super-feature, all the underlying features will match
well. The super-features help identify the chunks that are
similar for a match.

After we compute all features, a super-feature SFj is built via
a Rabin fingerprint over k consecutive features. We represent
consecutive features as featureb...e for beginning and ending
positions b and e, respectively.

In order to obtain a suitable tradeoff between the number of
features and the super-feature’s quality, we performed a large
number of experiments. The experiments were completed with
Campus datasets as described in Section IV-A. The Campus
set contained multiple weeks of backups and had variable-
size data from several to hundreds of Terabytes. We use the
variable numbers of features per super-feature and the super-
features per sketch. We observe that increasing the number of
features per super-feature will increase the quality of matches
but decrease the number of the identified matches. On the other
hand, if we increase the number of super-features, the number
of matches increases, unfortunately causing the increase in the
indexing overheads. We typically identify that four features per
super-feature can obtain the suitable tradeoff that exhibits good
resemblance matches.

A resemblance lookup is executed in an index repre-
senting the corresponding super-features of previously pro-
cessed chunks. We use each super-feature as a query request.
Chunks that match on more super-features are considered bet-
ter matches than those that match on fewer superfeatures, which
is helpful to our approximate delta compression in the remote
backups.

B. Data Filtration

Data filtration in Neptune consists of chunk-level deduplica-
tion and approximate delta compression.

First, the deduplication has become a key component in mod-
ern backup and archive systems. It eliminates duplicate data,
thus effectively improving the system efficiency. The dedupli-
cation divides a data stream into variable-sized chunks (e.g., 8
kB on average), and then replaces duplicate chunks with point-
ers to their previously stored copies. A deduplication system
identifies each chunk by its hash digest, namely fingerprint.
A fingerprint index is used to map fingerprints of the stored
chunks to their physical addresses. In practice, due to the vari-
able sizes of chunks, a deduplication system manages data at
a larger unit, called container. A container is fixed sized (e.g.,
4 MB). A container is the basic unit of read and write oper-
ations. For a backup, Neptune aggregates the chunks into the
containers to preserve the locality of the data stream. Moreover,
for a restore, Neptune uses the container as the prefetching
unit. A least recently used (LRU) algorithm is used to evict a
container from the restore cache.

Second, the delta compression is designed as a faster and
more efficient way. It leverages the similarities between files
and can create significantly small compressed files. Hence, in
order to improve network transmission, transmitting only the
difference (or delta) between two files requires a significantly
smaller number of bits. Delta compression uses a compressor
that accepts two inputs. One is the target file to be compressed.
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The other is a reference source file. The delta creator locates and
copies the differences between the target and source files, com-
pressing only those differences as a delta. The decompressor
takes the delta and source files as the input to create an exact
copy of the target.

C. Delta Chains

The time overheads in terms of transmitting files to and from
a server are directly proportional to the amounts of data to be
sent. For a delta backup and restore system, the amount of
data is also related with the manner in which delta files are
generated.

1) Linear Delta Chains: In storage backup systems, a lin-
ear sequence of versions constructs the history of modifications
to a file. The sequence is generally called a version chain. The
version chain may result in frequent access to old data and cause
more transmission delays. Conventional schemes mainly use a
linear version chain which is a compact version storage scheme.
The linear chain can represent the interversion modification
between consecutive versions.

We denote the uncompressed ith version of a file by Vi. The
difference between two versions Vi and Vj is Δ(Vi,Vj). The
file Δ(Vi,Vj) represents the differentially compressed encoding
of Vj via Vi, which allows Vj to be restored by the inverse
differencing operation in Vi and Δ(Vi,Vj). The differencing
operation is represented as δ(Vi, Vj) → Δ(Vi,Vj). Moreover, we
present the inverse differencing or reconstruction operation to
be δ−1(Δ(Vi,Vj), Vi) → Vj . In the context of a linear-version
chain, we say that versions Vi and Vj are adjacent if j − i = 1.
We can build Vi via the modification of Vi−1.

For a file, the linear sequence of versions is
V1, V2, . . . , Vi−1, Vi, Vi+1, . . .. In order to store and main-
tain these version, conventional approaches generally leverage
a series of deltas. For example, two adjacent versions Vi and
Vi+1 are used to store the difference between these two files,
ΔVi,Vi+1

. The adjacent versions hence lead to a “delta chain,”
such as V1,Δ(V1,V2), . . . ,Δ(Vi−1,Vi),Δ(Vi,Vi+1), . . .. In the
context of delta chains, we need to iteratively execute the
inverse differencing algorithm on all intermediate versions,
i.e., from 2 to i, to reconstruct the version Vi.

In terms of time overhead of rebuilding a version, we need
to reconstruct all of the intermediate versions. In general, the
reconstruction time is linear to the number of intermediate
versions.

2) Shortcut Delta Chains: In order to improve the
restore performance and reduce the operation delays, we
propose a shortcut scheme for multiversion delta chains.
The shortcut scheme leverages a minimum number of
files for reconstruction. This delta chain consists of the
modified forward deltas and a randomly selected file,
V1,Δ(V1,V2),Δ(V1,V3), . . . ,Δ(V1,Vi−1), Vi,Δ(Vi,Vi+1), . . . .

The shortcut chain has the benefit of allowing any given ver-
sion to be reconstructed by accessing at most two files from the
version chain. When a client executes the delta compression,
the files to be transmitted to the server can be stored. Moreover,
besides adjacent versions, Neptune needs to offer efficient and
scalable delta compression for two nonadjacent versions, say,

versions Vi and Vj . We use |Δ(Vi,Vj)| to represent the size of
Δ(Vi,Vj). If j − i increases, the size will increase, thus, leading
to potential decrease of the compression quality.

In general, two adjacent versions Vi and Vi+1 have α|Vi|-
modified fractions between them. The parameter α represents
the compression quality between adjacent versions. Neptune
makes use of a differencing algorithm to build a delta file
Δ(Vi,Vi+1). The larger the size α|Vi| is, the better the com-
pression performance is. The version compression is given by

Vi = 1− |Δ(Vi,Vi+1)|
|Vi+1| .

This result mainly demonstrates the relative compressibility
of all new versions that have the identical-size deltas. However,
for the worst-case compression, the size of the delta file is α|Vi|,
and the new version has the variable sizes from |Vi| to (1 +
α)|Vi|. The α|Vi|-modified fractions in Vi+1 are able to replace
existing fractions in Vi, i.e., |Vi| = |Vi+1|. We further analyze
the worst-case size of shortcut delta chains. Specifically, the
maximum size of the modified fractions is α|Vi| between ver-
sions Vi and Vi+1. Between versions Vi+1 and Vi+2, we can
obtain at most α|Vi+1|-modified fractions. Hence, between ver-
sions Vi and Vi+2, by carrying out the union bound on the
number of the modified fractions, we obtain at most 2α|Vi|
modified fractions.

D. Delta Compression and Recovery

Compression techniques are widely used in computer net-
works and storage systems to increase the efficiency of
data transmission and reduce space requirements on the end
systems. Delta encoding greatly reduces data redundancy.
Collections of unique deltas are substantially more space effi-
cient than their nonencoded equivalents. In practice, there are
two inputs, i.e., target file to be compressed and a reference
source file. Encoding deltas need to compress the difference
between the target and source file as a delta. On the other
hand, decoding delta takes the delta and source files as inputs
to generate an exact copy of the target.

The rationale of delta compression comes from the fact that
both sender and receiver contain a reference file that is simi-
lar to the transmitted file. Hence, we only need to transmit the
difference (or delta) between the two files, which requires a sig-
nificantly smaller number of bits. Formally, we have two files
fnew, fold, and a client C and a server S connected by a com-
munication link. C has a copy of fnew, and S has a copy of fold.
The design goal is to compute a file fδ of minimum size, such
that S can reconstruct fnew from fold and fδ . fδ is called as a
delta of fnew and fold.

The implementation details are described as follows. Delta
compression can compress files by calculating the differences
of similar regions relative to some reference/base region. Once
a base file is selected for delta compression, it can be divided
into multiple base chunks. To perform delta encoding, we use
a technique based on Xdelta [8] which is optimized for com-
pressing highly similar data regions. Specifically, we initialize
the encoding by iterating through the base chunk, calculating
a hash value at subsampled positions, and storing the hash and
offset in a temporary index. We then begin processing the tar-
get chunk from a target file by calculating a hash value at rolling
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TABLE I
DATA PROPERTIES IN TERMS OF FILE TYPES FOR CAMPUS DATA

window positions. We look up the hash value in the index to find
a match against the base chunk. If there is a match, we compare
bytes in the base and target chunks forward and backward from
the starting position to create the longest match possible. If the
bytes fail to match, we insert the target’s bytes into the output
buffer, and we also add this region to the hash index.

In general, users may choose to recover some files at some
points after their deletion. Although the design goal of Neptune
is to remove near duplicate files, the recovery function is useful
in improving system usability and allows users to flexibly and
easily use the Neptune scheme. In order to support the recov-
ery functionality, a simple but naive solution is to maintain the
deleted files as backups, which consumes substantial system
resources (computation and space overheads).

In order to offer a cost-effective and efficient recovery solu-
tion, we propose a delta-based decompression scheme that
computes the difference among multiple similar files against a
base one. The base file can be artificially selected by users or
automatically by Neptune that leverages well-recognized clus-
tering algorithms. Neptune only needs to maintain the base file
(not deduplicated) and the deltas from other deduplicated files.
The delta-based design can significantly reduce the demand for
system resources while supporting the recovery functionality.
In order to facilitate the delta decoding in the delta recovery,
Neptune maintains all files that were ever base ones, even if
they are selected to be removed by some other users. When
users want to recover files, Neptune executes the delta decoding
operations by computing the base files and the deltas.

IV. PERFORMANCE EVALUATION

A. Experiments Setup

We have implemented Neptune between two data centers,
and their distance is more than 1200 km via 2 Mb/s network
link. Each center consists of 128 servers and each server has a 8-
core CPU, a 32-GB RAM, a 500-GB 7200 r/min hard disk, and
Gigabit network interface card. The Neptune prototype imple-
mentation required approximately 6000 lines of C code in a
Linux environment.

To examine the system performance, we leverage three
typical backup datasets, i.e., LANL [20], EMC [21], and a
Campus collection from real-world cloud backup applications.
We describe the characteristics of the Campus dataset.

1) Campus: In order to comprehensively examine the per-
formance, we use a real collection from a campus cloud system.
This system offers cloud storage services for more than 70 000
users, including faculty, staff, graduate students (Ph.D. and
Master), and undergraduate students. Each user is allowed to
use 50-GB capacity, and the entire used storage capacity is
more than 1.5 PB. As shown in Table I, we report the properties

of the stored data after average 2-year use. We also examine
the percentage of the modified files in each type. Moreover,
the office and pdf files are frequently modified. Performing
the delta compression upon them can obtain more bandwidth
savings. More than 15% files have been modified, meaning
that they can also be delta compressed within backup peri-
ods. Furthermore, by leveraging the exact matching chunk-level
detection, we can identify duplicates of file, pdf, and office files.
In addition, the near-duplicate files occupy more than 57.2%
percentage of entire dataset.

Neptune can support top-k approximate delta compression
and deliver high system performance. The k value determines
the number of transmitted fingerprints from destination to
source servers to identify similar fingerprints. In general, the
larger the k value is, the more the base fingerprints can be
found, which unfortunately incur the longer latency due to
computation-intensive indexing. In order to select suitable k
values, we attempt to examine the tradeoff between obtained
bandwidth savings and execution latency. The used metric is the
normalized rate that is the value of the saved bandwidth divided
by the indexing latency. Specifically, we count the bandwidth
against different k values and compute their normalized values
between the minimum and maximum values. In the similar way,
we compute the normalized latency values of executing top-k
indexing. We observe that the selected k values are respectively
4, 5, and 6 for three used sets. These k values can obtain suitable
tradeoff between bandwidth savings and indexing latency.

To the best of our knowledge, there are no existing
approaches that can support both local deduplication and delta
compression for remote communications. In order to carry out
fair and meaningful comparisons, we, respectively, compare
Neptune with these two aspects. For deduplication, we compare
Neptune with state-of-the-art deduplication schemes, including
EndRE [2] and CBD [3]. For delta compression, we compare
Neptune with EMC SIDC [4] that is a salient feature of backup
replication in EMC backup recovery systems. Moreover, due
to no open source codes, we choose to reimplement EndRE [2],
CBD [3], and SIDC [4]. Specifically, we implemented EndRE’s
end-host-based redundancy elimination service, which includes
adaptive algorithm (i.e., SampleByte) and its optimized data
structure. We also implemented the components of CBD,
including fingerprint cache, containers, and super-chunk-based
data routing scheme. SIDC was implemented, including its
Bloom filter, fingerprint index, and containers, to load the stored
sketches into a stream-informed cache.

B. Results and Analysis

1) Deduplication Throughput: Fig. 1 shows the results
in terms of deduplication throughput. Specifically, Neptune
achieves an average throughput of about 3.36 GB/s, higher
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Fig. 1. Deduplication throughput.

Fig. 2. Time overhead in the file deduplication.

than 1.92 GB/s in EndRE and 1.35 GB/s in CBD. CBD has
to consume more memory to handle stateful routing with high
overhead, thus, obtaining relatively low performance. The sub-
stantial throughput improvements of Neptune attribute to the
LSH-based grouping scheme that can significantly narrow the
scope of processing data while alleviating the overheads and
improving the deduplication throughput. In general, EndRE
can deliver high performance when relatively large memory
is available. However, in the context of this paper, the mem-
ory capacity is limited in remote backups. Although EndRE
optimizes data structures to reduce memory overhead, its fin-
gerprinting hash table in practice consumes substantial space
that is much larger than the limited memory size. EndRE hence
has to frequently access to the noncached fingerprints in hard
disks, thus decreasing the throughput.

2) Time Overhead: We examine the time overhead in
completing the file deduplication and the experimental results
are shown in Fig. 2. EndRE leverages sample-based finger-
printing algorithm to accelerate the deduplication. Neptune
obtains the smallest time overhead due to the usage of the LSH
computation to implement the fast and accurate detection of
duplicates.

3) Effective Network Throughput: We perform numer-
ous remote communications’ experiments to measure effective
network throughput between two remote cities. Their distance
is more than 1200 km via 2 Mb/s network link. Fig. 3 shows
the results of the Campus dataset that has the largest size. The
throughput runs at 2 Mb/s and is measured every 20 min. We
observe that compared with full replication (i.e., the baseline),
the average effective throughputs in Neptune and SIDC are
286.27 and 57.26 Mb/s, respectively, much larger than the base-
line 1.57 Mb/s. The main reason is that both Neptune and SIDC

Fig. 3. Effective throughput in remote communications.

Fig. 4 Delta computation overheads.

leverage the delta compression that physically transfers much
less data across the network. Furthermore, SIDC replies on the
closest fingerprint to determine the similarity. Performing the
delta compression on a single base chunk limits the utilization
and causes the decrease of communication performance. The
reason is that SIDC often fails to identify similar chunks to be
compressed. Unlike it, Neptune obtains better performance by
finding more chunks that can be delta compressed.

4) Delta Computation Overheads: Neptune leverages
the delta compression to improve the effective throughput,
which meantime incurs extra computation and disk I/O over-
heads. We examine these overheads in local servers and remote
backup servers. First, the storage capacity overheads for main-
taining fingerprints are relatively small. Each chunk stored in a
container (after deduplication) has the fingerprints. The finger-
prints are added to the metadata section of the storage container,
which is less than 40 bytes. The disk I/O overhead is modest
(around 4.5%). Furthermore, since the main overhead comes
from the computation cost, we examine the real CPU utilization
in both source and destination servers, as shown in Fig. 4.

We measure the CPU utilization over every 2-min period
after the initial seeding phase. In the source servers, the CPU
utilization is around 2.47% to mainly identify top-k finger-
prints and compute the deltas to be transmitted. We also observe
that in the destination server, the CPU utilization demonstrates
increasing trend, from 4.7% to 9.8%. The main reason is that the
CPU overhead, i.e., indexing upon Bloom filters and fingerprint
structure, almost scales linearly as the number of transmit-
ted data. Overall, the entire CPU overheads are no more than
10%, which is acceptable in the servers, due to the increasing
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Fig. 5. Average recovery time.

Fig. 6. Distribution of hours saved by users.

number of CPU cores. In essence, we trade computation and
I/O resources for higher network throughput between remote
network servers.

5) Recovery Overheads: The delta-based recovery
scheme can remotely restore the removed files with relatively
small space and computation overheads. Compared with full
backups, the proposed delta-based recovery scheme in Neptune
can significantly reduce the system overheads. Note that since
most encoding operations can be completed in an offline
manner, we mainly examine the decoding (i.e., recovery) time
that is the main concern for users.

Fig. 5 shows the recovery time by examining the operation
of decoding the deltas. We observe that the recovery time is
approximately linear to the number of files to be recovered.
Recovering 1000 files requires about 1 s, which is generally
acceptable to users. As described in Section III-C2, Neptune
leverages the shortcut chains to allow any given version to
be restored by accessing at most two files from the version
chain. Neptune hence avoids extra computation latency on the
intermediate deltas and supports fast recovery.

6) Neptune Assessment by Users: We analyzed daily
reports from cloud systems used by users during the second
week of October 2012. Fig. 6 shows how much time was saved
by the users versus sending data without any compression. We
reported the amounts of the transmitted data, network through-
put, and compression performance. We hence can calculate
how long remote backups would take without compression. The
median users would require 1025 h to fully replicate their data
(more than 6 weeks). With the aid of Neptune, the backups were
reduced to 18.5 h (saving over 1000 h of network transfer time).

TABLE II
USER FEEDBACKS FROM NEPTUNE (AVERAGE SCORES)

TABLE III
USER FEEDBACKS FROM BASELINE (AVERAGE SCORES)

We argue that it is important and intuitive to evaluate new
backup service by considering users’ experiences after they
use a new system design. Users’ feedbacks often show some
important aspects that may not be revealed by either simula-
tions or implementations, and thus serve to complement the
prototype-based evaluations.

A total of 500 users, including 50 faculty members, 100 staff
members, 150 graduate students, and 200 undergraduate stu-
dents, were requested to use and evaluate a prototype version
of Neptune after they use it. Users installed the client pro-
gram of Neptune in their local operation systems (Windows or
Linux). Neptune then allows the users to use the remote back-
ups. Moreover, we also compare the feedbacks of Neptune with
those of a baseline approach. The baseline approach can support
backup service via direct transmission without deduplication
and delta compression. Their experiences are rated on a scale of
1–5, i.e., 5 (Outstanding), 4 (Good), 3 (Satisfactory), 2 (Poor),
and 1 (Unsatisfactory). The users’ feedbacks are summarized in
Tables II and III, respectively, for Neptune and Baseline.

The average evaluation score of the overall performance in
Neptune is 4.17, which is much higher than 3.19 in Baseline.
The results demonstrate that Neptune is satisfactory with
respect to its effectiveness and efficiency. The usage of our
deduplication scheme is proven to be easy.

V. CONCLUSION

In order to offer efficient remote communications in cloud
backups, this paper proposed a cost-effective backup frame-
work, called Neptune. Neptune is designed for cloud backup
services by leveraging comprehensive data filtration, includ-
ing local deduplication and network delta compression. To
improve the network transmission performance, Neptune uses
approximate delta compression to identify more chunks to be
compressed. The approximate methodology can significantly
decrease the complexity in terms of data compression and
reduce the data to be transmitted. Moreover, the shortcut-chain
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approach leverages a minimum number of files for reconstruc-
tion and improves the compression performance by alleviating
the computation overhead in the recovery. Neptune has been
implemented and thoroughly evaluated in remote backup sys-
tems. Extensive experimental results demonstrate the benefits
over state-of-the-art schemes including EndRE, CBD, and
SIDC. In the future work, by exploiting and exploring the fea-
tures of data filtration, we plan to use the proposed Neptune
scheme into the real cloud systems and support efficient backup
services.
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