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A Fast Learned Key-Value Store for Concurrent
and Distributed Systems

Pengfei Li, Yu Hua Senior Member, IEEE , Jingnan Jia, and Pengfei Zuo

Abstract—Efficient key-value (KV) store becomes important for concurrent and distributed systems to deliver high performance. The
promising learned indexes leverage deep-learning models to complement existing KV stores and obtain significant performance
improvements. However, existing schemes show limited scalability in concurrent systems due to containing high dependency among data.
The practical system performance decreases when inserting a large amount of new data due to triggering frequent and inefficient
retraining operations. Moreover, existing learned indexes become inefficient in distributed systems, since different machines incur high
overheads to guarantee the data consistency when the index structures dynamically change. To address these problems in concurrent
and distributed systems, we propose a fine-grained learned index scheme with high scalability, called FineStore, which constructs
independent models with a flattened data structure under the trained data array to concurrently process the requests with low overheads.
FineStore processes the new requests in-place with the support of non-blocking retraining, hence adapting to the new distributions
without blocking the systems. In the distributed systems, different machines efficiently leverage the extended RCU barrier to guarantee
the data consistency. We evaluate FineStore via YCSB and real-world datasets, and extensive experimental results demonstrate that
FineStore improves the performance respectively by up to 1.8× and 2.5× than state-of-the-art XIndex and Masstree. We have released
the open-source codes of FineStore for public use in GitHub.

✦

1 INTRODUCTION

E FFICIENT data storage and access are important to
deliver high system performance, which however are

exacerbated by the explosive growth of data. Existing index
structures, such as B+-tree [2], Hash-map [3], and Bloom
filters [4], usually support in-memory systems to handle data
processing tasks in a memory-efficient manner over the past
decades [5], [6], [7], [8], [9].

In general, tree-based structures keep all data sorted
for range queries, which aim to identify the items within
a given range. Many systems, such as NoSQL systems
(e.g., MongoDB [10]), IBM DB2 [11], LevelDB [12] and
PostgreSQL [13], construct tree-based structures to provide
efficient data storage and access. However, the trees deliver
low search performance when storing a large amount of data,
due to the expensive pointer jumping among multi-level
inner nodes. Moreover, the high space overhead becomes
exacerbated once the index structures are too large to fit into
the limited-size memory [14].

Unlike them, Kraska et al. [15] argue that exact data
distribution enables efficient optimizations for index struc-
tures. For instance, a linear regression function is sufficient
to store and access a set of continuous integer keys (e.g.,
the keys from 1 to 100M), which has significant advantages
over traditional B+-trees in terms of lookup performance and
memory overhead. The patterns of data distributions become
important for memory systems to deliver high performance.
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The preliminary version appears in the Proceedings of the 48th International
Conference on Very Large Data Bases (VLDB), 2022, pages: 321-334 [1]. This
extended version represents significant improvements over the preliminary
version, i.e., scaling existing learned indexes to the distributed systems via the
pipeline operations and the extended RCU barrier.

However, some patterns are extremely complex or even
impossible to be accurately represented via known patterns.
In the context of our paper, a known pattern is the data
distribution that could be represented via one known mathe-
matical function, such as the linear distribution. Instead, the
extremely complex pattern has to be partitioned into multiple
parts and represented via multiple mathematical functions,
such as the data distributions of real-world datasets, e.g.,
processing the data of smart devices [16], the petabyte-
scale storage systems of Facebook [17], [18] and LMDB [19].
We consider machine learning (ML) approaches to learn a
model that exhibits the patterns of data distribution, called
learned indexes [15]. The learned indexes open up a new
research topic on indexing in memory systems: Indexes can
be considered as machine learning models.

In the concurrent and distributed systems, we use cost-
efficient computations to speed up traditional comparisons,
thereby increasing access speed and saving memory space.
The inefficiency of the traditional comparisons comes from
the cache misses when accessing different data from different
locations. Specifically, the traditional B+-tree searches data
via traversing the nodes, which adopts multiple comparisons
to determine the node to be accessed next and significantly
decreases the performance when sufferring from multiple
cache misses. The concurrency in the context of this paper
is interpreted as that the index operations (e.g., read and
write data) are executed by using multiple threads. However,
it is non-trivial to efficiently leverage learned indexes for
concurrent and distributed systems due to the following
challenges.

1) Limited Scalability and Concurrency. The scalability
requires the learned indexes to efficiently handle inserts and
adjust to the new data distributions at runtime, as well as
scaling to multiple threads for high concurrent performance.
However, existing schemes show limited scalability since
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they do not simultaneously meet all these requirements,
including concurrent reading, writing and retraining. For
example, FITing-tree [20], ALEX [21] and PGM-index [22]
do not consider the data consistency issues to concurrently
retrain the models in the multi-core systems. XIndex [23]
stores the data into different data structures, hence not
keeping all data sorted for efficient range query performance.

2) Long Tail Latency under Heavy Writes. Existing
schemes incur long tail latency in concurrent and distributed
systems due to the heavy data dependency. Specifically,
XStore [24] maintains a B-tree on the server and relies on
the B-tree to process the modifications. The servers have to
traverse multi-level inner nodes of the tree, incurring long
latency to obtain the required data. Moreover, deploying
existing scalable learned indexes in the distributed systems
fails to decrease the tail latency due to the inefficient share-
based data structures. Among them, XIndex [23] and FITing-
tree [20] handle inserts through a delta-buffer, which is a
tree-based structure [9] (e.g., B+-tree or Masstree) and has
high dependency of inner nodes when traversing the tree.
ALEX preserves empty slots in the trained data arrays to
handle inserts, which incur many thread collisions due to the
contentions for the available slots during insertions. PGM-
index recursively merges multiple sets for insertions, which
becomes inefficient when multiple threads concurrently write
a large number of data due to competing for merging the
sets.

3) High Overheads for Consistent Guarantees. The data
consistency requires that the newly inserted or modified
data is correctly identified by all machines. However, the
learned indexes record the data positions during the training
phase and fail to perceive the new data positions when
different machines frequently modify (e.g., insert and delete)
the data. Existing learned index schemes have to retrain the
models to record the new data positions, which is a time-
consuming operation. The challenge is how to ensure the
data consistency among different machines without blocking
other index operations.

In order to address these challenges, we present a fine-
grained learned index scheme for concurrent and distributed
systems, called FineStore. Our proposed FineStore achieves
high concurrency via a fine-grained index structure, which
appends the low-overhead level bins under each trained data
to alleviate the data dependency. By using such flattened
structure, FineStore mitigates the thread collisions and
achieves efficient scalability. In fact, the used level bins are
two-level sorted arrays, which are used to efficiently handle
inserts while keeping all data sorted to support range queries.
During the runtime, FineStore concurrently retrains data
in two granularities to adjust to the new data distribution
without blocking the system. In the distributed system, the
clients efficiently identify the locations of remote data via
the cached index structures, which incur low overheads
of network roundtrips due to the efficient calculations.
Moreover, we extend the RCU barriers in the distributed
system to enable the stale cached indexes to correctly identify
the modified data. Our experimental results show that
FineStore improves the insertion performance respectively
by about 1.8× and 2.5× than state-of-the-art XIndex and
Masstree, while consuming less memory space.

It is worth noting that the mentioned models are in-
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Figure 1: The learned index model and structure.

terpreted as linear regression ML models with bounded
prediction errors, which predict the positions of the keys.
To ensure that no data are lost in the system, the bounded
prediction errors are determined by the data that is farthest
from the central function. We use multiple small models,
rather than a complex model, to learn the data distribution,
since multiple small models are flexible and efficient for
system scalability [15], [20], [23].

In this paper, we have the following contributions.
• High scalability meeting system requirements. We

present a fine-grained learned index scheme for concurrent
and distributed systems, i.e., FineStore1, which efficiently
meets the scalability requirements and provides high con-
current performance with low overheads. The main insights
are to weaken the data dependency via the flattened data
structures and concurrently retrain the models without
blocking the systems.

• High performance for cost-efficient index operations.
The index operations (i.e., read and write) are cost-efficient,
since FineStore incurs a few data movements during insertion
and keeps all data sorted for accessing. For write-intensive
workloads, FineStore alleviates the thread collisions by
weakening the data dependency. In the distributed systems,
the clients efficiently access the remote data via calculating
the cost-efficient learned models.

• Low overheads for consistent guarantees. FineStore
concurrently retrains models in two granularities, which
not only supports concurrent operations during retraining,
but also guarantees that the new models identify the data
modified by other threads. Moreover, the server leverages
the extended RCU barrier to enable the clients to correctly
identify all data via the stale index structures.

2 BACKGROUND AND MOTIVATION

2.1 New Perspectives on Indexes
From the perspective of machine learning, the range index
structures are considered as regression models [15], which
predict the position of a given key, as shown in Figure 1a.
In the B+-tree, the data are found through traversing the
tree. A learned index [15] views this process as a predic-
tion and supports range queries, which requires the data
to be sorted, thus facilitating efficient data access. The
records between [pred−max err, pred+max err] are the
analogy with the leaf nodes in the B+-tree. The length of
[pred−max err, pred+max err] is related with the lookup
performance.

In order to provide practical and accurate prediction, the
sorted keys and true positions are respectively considered as

1. The source codes of FineStore are available at
https://github.com/iotlpf/FINEdex.
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the inputs and outputs. The relationship between keys and
positions is a monotonically increasing curve and similar to
a cumulative distribution function (i.e., CDF, which helps
to learn the data distribution) [15], [23]. Based on this
observation, the prediction accuracy can be improved by
learning the patterns of data distribution.

Using a single ML model to achieve high prediction
accuracy is difficult, which results in complex ML models.
In the meantime, it is hard to design and train this type
of models due to the unacceptable training overheads. The
learned indexes propose a recursive model index (RMI) [15],
[25] to improve the prediction accuracy, which gradually
reduces the prediction ranges via multiple small ML models.
The main idea of RMI is to build a model hierarchy and
predict the positions of keys via trained models [15]. As
shown in Figure 1b, the RMI consists of 3 stages, respectively
containing 1, 2 and 3 ML models. These models are trained
in the order of hierarchical relationships, each of which
is trained with different data. For example, Model 1.1 in
the top level is trained first with the whole dataset. Based
on the prediction results of Model 1.1, either Model 2.1 or
2.2 is selected and the entire dataset is also divided into
two subdatasets according to the selection results. The two
models in the second stage are trained with their individual
subdatasets. The next stage follows the similar training
process. In order to accurately find the queried key, the
learned indexes store the absolute max error for each model
in the last stage, which is calculated as follows:
max err = max(abs(yi − f j

L(x))) ∀i ∈ SL.j , j ∈ ML (1)
where yi represents the true position of each key in the
subdataset SL.j , f j

L(x) represents the prediction result of
jth model in the last stage L and there are Ml models in
stage l. If max err is larger than the predefined threshold,
the ML model becomes invalid to be replaced with a B+-
tree. Finally, learned indexes show the prediction accuracy
[pred−max err, pred+max err] if the picked ML model
is valid, otherwise searching the B+-tree.

2.2 Concurrent and Distributed Indexes Requirements
In concurrent and distributed systems, multiple threads of
different machines access the index structures to process var-
ious index requests, which require the indexes to efficiently
support high concurrency, guarantee the data consistency,
and provide high performance.

Efficient concurrency. Providing concurrent operations
becomes important in the systems that scale to a large
number of cores and threads. No or few thread collisions
are generally helpful to improve concurrent performance,
especially for the learned indexes to insert and retrain new
data at runtime. However, it is non-trivial to concurrently
retrain the learned indexes, since the retraining consumes
a long time to block other operations on resorting and
retraining the data.

Strong data consistency. Guaranteeing the data consis-
tency becomes a foundational requirement to prevent the
data loss. However, frequently modifying data decreases the
model accuracy of the learned indexes, since the learned
models record the data positions during the training phase
and fail to perceive the new data positions unless retraining.
The challenge is how to ensure the data consistency without
blocking concurrent operations.

Table 1: The limited scalability of existing schemes.

Schemes Keep all concurrency scale to distri-
data sorted write retrain buted systems

RMI [15] ! % % %

FITing-tree [20] % % % %

XIndex [23] % ! ! %

ALEX [21] ! % % %

PGM-index [22] ! % % %

FineStore ! ! ! !

High performance. As an ordered index structure, all data
need to be kept sorted during insertion for efficient range
query performance. Otherwise, we need to search the queried
data multiple times, incurring long latency. Moreover, the
index structure should maintain low data dependency to
avoid the thread collisions for high concurrent performance.

In the distributed systems, incurring few network
roundtrips among different machines becomes important
to meet the high-performance requirements. The promising
Remote Direct Memory Access (RDMA) network enables
one machine to directly access the remote memory without
involving the remote CPUs, which provides high throughput
and low latency for data accessing [24], [26], [27]. However,
deploying tree-based structures in the distributed system
becomes inefficient, since the clients have to spend multiple
network roundtrips on traversing the inner nodes and
the dependency among inner nodes increases the thread
collisions when modifying the data.

2.3 The Inefficinecy of Existing Schemes

Various learned indexes leverage different strategies to
support scalability, including FITing-tree [20], ALEX [21],
PGM-index [22] and XIndex [23], which however show
limited scalability, as shown in Table 1. Specifically, FITing-
tree and XIndex handle inserts in the delta-buffers. Their
differences are that XIndex uses a concurrent delta-buffer
(i.e., Masstree [9]) and supports concurrent retraining, as
shown in Figure 2a. Although handling inserts in the delta-
buffer won’t affect the trained data and guarantees the data
correctness during insertion, such design is inefficient due
to storing the data in two different structures. XIndex [23]
shows that the search performance decreases about 3× when
the delta-buffer becomes large, due to checking both learned
indexes and delta-buffer in each index operation. Moreover,
when scaling to multiple threads, the use of delta-buffer
increases the thread collisions due to being shared by all the
data covered by the model. The delta-buffer is a tree-based
structure, which has high dependency among inner nodes
during traversing the tree. To improve the performance,
XIndex proposes a Two-Phase-Compact technique to enable
concurrent retraining, which concurrently compacts the delta-
buffer in the learned indexes without blocking the systems.
However, such design still suffers from the inefficient delta-
buffer, which handles inserts by constructing another delta-
buffer during retraining.

In ALEX, we leverage empty slots in the trained data
array to handle inserts in-place. During insertion, existing
data in the trained data array are moved backward to the
empty slots for the new data. At the same time, we check
the trained model and expand the prediction error as needed
to avoid the error that some data are moved out of the
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Figure 2: The structures of XIndex and FineStore. FineStore consists of model and data parts.

prediction range. Unlike it, PGM-index allocates multiple
empty sets and merges different sets to handle inserts.
However, such designs become inefficient when scaling to
multiple threads, since different threads compete for the
shared empty slots and the pre-allocated empty sets during
insertion. Moreover, when there are insufficient empty slots,
ALEX and PGM-index fail to support concurrent retraining.
Before the retraining completes, we cannot concurrently
insert new data, since the new model under retraining fails
to perceive the error that some data are moved out of the
prediction range during insertion. To guarantee the data
consistency, the thread conducting retraining blocks the
system for a long time, which significantly decreases the
concurrent performance.

3 THE FINESTORE DESIGN

In this section, we present the design of FINE-grained
scalable learned index, or FineStore, for concurrent memory
systems. The key insight of achieving high concurrent
performance is to reduce the dependency among data, as
well as mitigating conflicts among threads. Based on these
principles, FineStore handles inserts in the non-shared level
bins and concurrently retrains models in two granularities,
including the level-bin retraining and model retraining.
Specifically, the level bins are 2-level sorted arrays appended
behind each trained data, as shown in Figure 2b. Such
flattened data structure significantly reduces the numbers
of thread collisions, since the level bins behind different
trained data have no data dependencies. The new data are
inserted into the level bins according to the order to keep
all data sorted. At the same time, existing trained data are
not affected by the new data, which guarantees that no data
are lost during insertion. When the level bins are full, we
concurrently retrain the data in two granularities to adjust to
the new data distribution at runtime, including the level-bin
retraining and model retraining. The former retrains the full
level bins to obtain a small model, while the latter merges
small models to improve the performance. After retraining,
the old models are easily replaced with the new ones, since
all models in FineStore are independent. Through these
designs, FineStore achieves high concurrent performance
using multiple threads.

3.1 Model Part

3.1.1 The Learning Probe Algorithm
To overcome the shortcomings of previous strategies, our
paper proposes the learning probe algorithm (LPA), which
uses the greedy strategy to adaptively partition the data
according to the data distribution. In LPA, only the same

Figure 3: Setting different
thresholds to train models.
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linearly distributed data are divided into the same subdataset.
Therefore, each subdataset is easily learned by a linear
regression model. The criterion for judging whether the
data have the same distribution is to examine if the error of
the obtained model exceeds a predefined threshold. If the
error of obtained model is smaller than this threshold, LPA
will add more data to the subdataset, otherwise remove a
small amount of data in the order from back to front until
the remaining data are linearly distributed. The complete
process of LPA is shown in Algorithm 1.

Before using LPA, we need to configure some parame-
ters including threshold, learning step and learning rate,
where threshold is the max error of the model we can toler-
ate, learning step and learning rate are used to determine
the learning speed. As shown in Algorithm 1, the main
component of LPA works like a probe, which first walks
forward for a large step of length learning step, i.e., add
learning step data from the training dataset record into a
small dataset S (line 2). Then, we obtain a linear regression
model on dataset S and calculate the prediction error of
the model (lines 3 and 4), where min err and max err
are calculated by Equation 1. The prediction error of the
obtained model determines the next operation of the probe.
If error < threshold, the probe keeps moving forward to
another learning step to obtain a new model until the error
of obtained model is not smaller than threshold (lines 5-8).
When error > threshold, the probe keeps moving backward
with a smaller step until the prediction error of the obtained
model is not larger than threshold (lines 9-13). The smaller
step is determined as follows:

small step = learning step ∗ learning raten (2)
where learning rate ∈ (0, 1), and n ∈ (1, 2, 3...) represents
that the probe iteratively moves backward with much smaller
steps. Finally, LPA appends the model to FineStore and cleans
the dataset S for next probing (lines 14 and 15).

Unlike RMI, all the model errors in LPA are smaller than
the predefined threshold, since LPA trains data according to
the data distribution and only the model whose prediction
error is not larger than threshold can be appended to
FineStore. The max-error of each obtained model is controlled
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by the predefined parameter threshold. The time complexity
of LPA depends on the data distributions, which has O(N)
complexity in the best case and O(N2) in the worst case,
where N represents the number of the trained data.

In FineStore, a small threshold ensures that the learned
models predict the positions in a small range, hence pro-
viding high prediction accuracy. However, setting a small
threshold needs to train a large number of linear regression
models, since a few linear regression models fail to accurately
represent the complicated real-world data distributions. As
shown in Figure 3, decreasing the threshold from 128 to 4
increases the number of models by more than 100 times,
which results in low performance to search the models, since
FineStore stores the independent models in the B-tree and
a large number of models increase the height of the B-tree.
From the evaluation results, we observe that 32 is an efficient
trade-off between the prediction accuracy and the model
numbers. Therefore, we use the predefined threshold 32 to
train the models.

Algorithm 1: LPA Algorithm
Input: int threshold,int learning step,float learning rate,
dataType record[N ]
Output: trained FineStore

1 while not reach the end of the dataset record[N] do
2 add learning step data into dataset S from record;
3 train a linear regression model on S;
4 error = max(|min error|, |max error|);
5 while error < threshold do
6 add next learning step data into dataset S from

record;
7 train a new model on S;
8 end
9 while error > threshold do

10 step=int(learning step ∗ learning raten);
11 remove step data from the end of dataset S;
12 train a new model on S;
13 end
14 FineStore.append(model);
15 clean data from dataset S for next probing;
16 end

3.1.2 Optimized Model Layout

The model layout is interpreted as the organization structure
for storing models, which affects the scalability and the
performance of finding models. Unlike RMI that has heavy
model dependency among different levels, our FineStore
trains independent models to enable high scalability.

The total number of models trained by LPA is small,
which is competitive with PGM-index, since LPA greedily
trains the models according to the data distributions, as
shown in Table 2. Hence, we store the piecewise models as
a cache-/SIMD-optimized btree (i.e., align the btree node
with cacheline and search the node with SIMD instructions)
to enable system scalability and deliver high performance.
The models are stored as < key,model > pairs, where key
is the largest trained data covered by each model and model
is a pointer to the model. The number of models in RMI
is manually set, since RMI fails to adaptively assign the
number of models according to the data distribution. As
XIndex shows that 250K models in RMI achieve the best
performance, we also configure 250K models to facilitate fair
comparisons.

Table 2: The numbers of models of different schemes
on various workloads.

Workloads Normal Lognormal Weblogs DocID YCSB
Number of Data 200M 200M 127M 10M 100M

Number LPA 57,835 58,027 38,355 50,260 25,532
of PGM-index 55,226 55,352 36,256 47,542 23,125

Models RMI 250,000 250,000 250,000 250,000 250,000

3.2 Data Part

We propose the structure of level bins under trained data
to process the modifications. The structure of the level bins
is a modified two-level B-tree as shown in Figure 2b. The
horizontal blocks represent the root bins and the vertical
blocks represent the child bins. When the two-level bins
are not full, the new data are inserted like a B-tree with
the difference that the data are l to be inserted into the
previous child bin. The full level bins do not grow to higher
levels to avoid high data dependency in the tree-based
structures. Instead, we propose fine-grained retraining with
two granularities to accommodate more data.

Specifically, Figure 2b shows how the level bins process
inserts. At the beginning, only one bin is placed under the
trained data for space savings and other bins are constructed
as needed. For example, we construct two child bins to insert
16 when the root bin is full. As more data are inserted, the
data are prioritized to be inserted into the previous child
bin to improve the space utilization. For example, we move
existing data forward to the first child bin when inserting
20 to improve the space utilization of existing bins. In this
case, we move at most (n+ 1) data, where n is the length of
the child bin. When the previous child bin becomes full, the
data is inserted like a two-level B-tree, which moves at most
(m+n/2) data in the worst case, where m and n respectively
represent the number of slots in the root and child bins. Each
bin has 8-16 slots in our experiments to achieve an efficient
tradeoff between scalability and access efficiency. We bound
the level bins to two levels to alleviate the data dependency
among levels, and retrain the full level bins to accommodate
more data. Our experimental results show that the maximum
load factor (i.e., the number of occupied slots divided by the
total number of slots) of FineStore is about 82%, which is
higher than 75% in the B-tree.

When scaling to multiple threads, the level bins behind
different trained data won’t block each other due to the low
data dependency, which incur few thread collisions. When
the learned structures learn the data distribution, the inserted
data are likely to exhibit the same patterns [15], and hence
are inserted evenly into all level bins. In this case, FineStore
handles nearly (m ∗ n) times more than the trained data.
When the data distribution changes, FineStore concurrently
retrains the level bins to fit the new data distribution, as
shown in Section 3.3.

Compared with B+-tree, level bins have lower data
dependency among different nodes, since level bins are
bounded to only two levels to mitigate the data dependency,
while the B+-trees commonly construct multi-level nodes and
contains high dependency among the data nodes. Moreover,
the level bins have high space utilization than B+-tree due
to prioritizing inserting data into existing child bins during
the insertion. Compared with hash-based structures, the
level bins ensure that all data are sorted for efficient range
query performance, while the hash-based structure randomly
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Figure 5: The challengs of different retraining strategies.

stores the data and fails to keep all data sorted. Furthermore,
level bins efficiently support our proposed two-granularity
retraining, while other data structures fail.

Figure 4 shows the operation throughput when adopting
different schemes in FineStore. From the results, we observe
that level bins deliver higher throughput to insert and access
data than the B+-trees, since the level bins efficiently support
two-granularity retraining to reduce the dependency among
data during the runtime, while the B+-tree fails.

3.3 Concurrent Retraining
In general, some level bins are full when more data are
inserted or the data distribution changes, e.g., the skewed
workloads (i.e., the data are modified in certain ranges).
Instead of reconstructing the indexes from scratch with high
overheads, FineStore performs retraining to adjust to the new
data distribution.

The challenge is how to ensure the data consistency
without blocking concurrent operations. For example, re-
training a model on one million data consumes up to several
seconds [15], which blocks the systems for a long time. As
shown in Figure 5, if we retrain the model in a sequential
manner, the data covered by the model (including the trained
data array and all level bins) are blocked until the retraining
is completed, which incurs high overheads in the concurrent
system. On the other hand, the data inconsistency occurs
during concurrent retraining. As shown in Figure 5, the new
data a is successfully inserted into the old models during
retraining (i.e., t1 to t3). However, the new models can’t find
a since the new models fail to train a when the retraining
begins at t1. Moreover, it is hard to identify which data are
inserted during retraining, since the newly inserted data are
mixed with existing data during reordering. Processing the
inserts in an extra delta-buffer separates the newly inserted
data with existing data, which however fails to keep all
data sorted and degrades the overall performance with the
growth of buffer size.

To address these challenges, FineStore performs retrain-
ing in two granularities, including the level-bin retraining
and model retraining. The former generates more space by
retraining full level bins and the latter merges small models
to improve the model accuracy and search performance.

3.3.1 Level-Bin Retraining
Retraining a model needs to retrain all the covered data in the
trained data array and the level bins. Hence, it is expensive
to retrain the whole model even if the level bins of only one
trained data are full. To address this issue, we retrain a new
model based on the data of the full bins, while other data in
the trained data array and the level bins are not retrained.
The new model is appended under the corresponding trained
data, and new level bins are created under the new model to
process the inserts, as shown in Figure 6.
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Figure 6: Concurrent retraining. Level-bin retraining retrains
full bins. Model retraining merges the small models.

Level-bin retraining achieves high concurrent perfor-
mance since only the full level bins are locked for the
data consistency, while other data are not related. Moreover,
performing level-bin retraining is cost-efficient (e.g., 27µs in
our experiments), since the full level bins contain no more
than m ∗ n data, where m and n respectively represent the
number of slots in the root and child bins.

3.3.2 Model Retraining
The system performance decreases when a large number
of small models are iteratively created via the level-bin
retraining. In this case, FineStore merges these small models
through the model retraining to maintain high performance.

As shown in Figure 6, FineStore conducts model re-
training by compacting the trained data arrays of different
models (i.e., the large and covered small models, including
the smaller ones). New models are trained on the covered
trained data arrays, which are not modified by the new
data according to the design principles in Section 3.2. The
retraining process is performed in the background to hide
the latency in the concurrent system. During retraining, the
level bins are not affected and concurrently process the in-
place modifications without blocking the overall system. We
directly append the pointers of the level bins under the
new trained data array. After the new models are retrained,
FineStore uses the RCU-barrier [23] to ensure that all threads
access the new models. The RCU-barrier is a synchronization
mechanism of concurrent systems, which enables all readers
to access the new data structures, rather than the old ones,
in a shared memory. Since both new and old models point to
the same level bins and the modifications during retraining
are processed in-place in the level bins, any concurrent
modification during the model retraining is not lost.

The model retraining is triggered when the small model
needs to retrain a smaller model. For skewed workloads,
FineStore assigns the level bins in the data-intensive parts
via retraining, which flattens the data-intensive parts after
several retrains. The new data are inserted into the flattened
data structure with low data dependency. For the skewed
workloads, i.e., reading and writing data in a certain range,
FineStore assigns the level bins in the certain range via
retraining, which flattens the certain data parts after several
retrains. The new data are then inserted into the flattened
data structure with low data dependency. Hence, FineStore
gradually adapts to the new data distribution along with
time.

3.4 Practical Operations
Search: Figure 2b shows a complete searching process for
item 7 using a single thread. Stage ❶: Find the model that
covers the item 7 in the model layout. Stage ❷: Search in the
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prediction range, which is calculated by the obtained model
f(x). Stage ❸: FineStore completes the search if finding
the given key in the prediction range, otherwise FineStore
searches the level bins or the small models.

Insert: FineStore searches the whole structure to identify
if the given data exists, and only the unique data are inserted
into the level bins as elaborated in Sections 3.2 and 3.3.

Update: If a given key exists in the structure, FineStore
updates the corresponding value via atomic writes, which
is easily implemented since the value is a 64-bit pointer
referring to the real data.

Remove: As shown in Figure 2b, we use the tokens (i.e., 0
and 1) to indicate whether the trained data are removed. The
data in the level bins are directly removed, since changing
the data within the level bins won’t affect the model accuracy.

Range query: FineStore processes the range query requests
via two steps. First, FineStore determines the lower and
upper boundaries like the point search. Second, FineStore
obtains all the data between the determined boundaries,
without searching the data one by one since all data are
sorted during the runtime.

3.5 Concurrency
Concurrent data structures become important to existing
systems that scale to a large number of cores and threads.
The thread collision probability of FineStore is rather low due
to the flattened data structure. We use the version control [9]
and allocate fine-grained locks to enable FineStore to support
concurrent operations.

3.5.1 Write/Write Conflicts
The write/write conflicts occur when different threads
modify the same trained data or the same bin. FineStore
allocates the per-record locks for the trained data and the
per-bin locks for the bins to enable concurrent writes. For
example, according to the principle of the modification
operations (Section 3.4), FineStore first updates/removes
the matching record (i.e., whose key is equal to the given
key) in the trained data array, and the per-record lock of
the corresponding record ensures the concurrent writes.
FineStore further modifies the data in the level bins when
failing to match a record in the trained data array. The per-bin
lock is used to enable concurrent bin to be updated and split.
Specifically, FineStore locks the child bin which is determined
to process the modification, while the root bin is locked as
needed (i.e., when child bin splits or the largest data in the
child bin changes).

Existing schemes use delta-buffers or preserve empty
slots to enable scalability, which however incur high over-
heads due to the data dependency. For example, many locks
are needed when the tree in the delta-buffer becomes large.
For the schemes preserving empty slots, we need to lock
all data covered by the same model to enable correct data
movements for resorting. Unlike them, FineStore decreases
the conflict probability, since different threads that modify
the level bins under different trained data don’t block each
other.

3.5.2 Read/Write Conflicts
Instead of using the locks during reading, FineStore uses the
version control [9], [28] to ensure that the obtained data is

consistent and latest. FineStore allocates the version numbers
for each trained data and bin, and increases the version count
when the data are modified. During reading, if a record in the
data structure matches the given key, FineStore maintains the
version v in the form of snapshot before obtaining the value.
The obtained value becomes valid if the version doesn’t
change (i.e., the version after reading the value becomes
equal to v) and the data is not locked. Otherwise, the latest
value is not read, since other threads are updating the value
during the data locking. FineStore repeats to read the current
and next child bins until obtaining the valid value, since the
data are possibly moved to the next child bins if the current
bin is split.

3.5.3 Write/Retrain Conflicts
FineStore avoids the write/retrain conflicts by training
the models in two granularities, including the level-bin
retraining and model retraining. Specifically, the level-bin
retraining locks the full level bins for retraining, which
ensures the data consistency due to blocking other data
modification operations. The model retraining avoids the
write/retrain collisions by sharing the level bins, i.e., the
write operations are conducted in the level bins via the old
models and these level bins are directly referenced by the
new models. Therefore, any modifications during retraining
are consistent in the new models.

3.5.4 Write/Split Conflicts
FineStore avoids the write/split conflicts by leveraging
the per-bin locks during the write phase. Specifically, only
one write thread obtains the lock of a bin and conducts
data modification operations, while other threads wait and
compete for the lock of the bin to avoid data collisions. The
read threads re-read the data to avoid the data inconsistency
when identifying that the bin is locked.

4 SCALE TO DISTRIBUTED SYSTEMS

It becomes common to scale to multiple machines, i.e., the
distributed systems, to enjoy the large storage capability [26],
[27], [29]. We store the data on servers and access remote
data via clients using the cached index structures. Caching
tree-based structures consumes a large amount of memory
due to the multi-level inner nodes, which becomes inefficient
to cache the whole index structures [29], [30], [31]. However,
caching partial index structure fails to determine the data
locations since some inner nodes miss the local cache. The
clients have to either spend multiple network roundtrips on
traversing the tree or transfer all requests to remote servers.
Both solutions become inefficient since multiple RTTs (i.e.,
the roundtrips time) incur long latency, while the scheme
of transferring requests to servers increases the computing
burden of remote servers. The servers become the system
bottleneck and decreases the overall performance when
failing to efficiently process the transferred data requests,
since the tree-based structures contain heavy dependency of
inner nodes and fail to enable high concurrency.

Compared with tree-based structures, the learned indexes
save 2-4 orders-of-magnitude space consumption, which
become efficient to be fully cached on clients [22], [24]. For a
given key, the clients obtain the remote data via a one-sided
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Figure 7: Scale FineStore to distributed systems.

RDMA according to the remote data location. In this case,
the data searching requests are offloaded to clients. However,
the challenges are to enable the servers to efficiently process
data modifications and ensure the data consistency between
servers and clients during the modifications. The state-of-the-
art scheme, i.e., XStore [24], achieves significant performance
improvements using the hybrid index structures, i.e., main-
taining the tree-based structure on servers to process data
modifications and caching the learned indexes on clients for
remote data searching. Such design suffers from multiple
thread collisions when processing intensive data requests,
due to the inefficient tree-based structures on servers.

Deploying existing learned indexes in the distributed
system incurs high overheads to search the data and ensure
the data consistency among different machines. For example,
FITing-tree [20] and XIndex [23] incur long latency to search
the remote data when the buffer becomes large, since the
clients have to spend multiple RTTs on determining the
data locations. ALEX [21] and PGM-index [22] fail to con-
currently retrain models due to the heavy data dependency,
as shown in Section 2.3. Although FineStore stores data
in the flattened data structure and supports concurrent
retraining, the index consistency among different machines
during retraining needs to be guaranteed. Because in a
single machine, FineStore concurrently retrains data in the
background and replaces the old models using the RCU
barrier, which fails to be deployed in the distributed systems
due to the lack of RCU barrier among multiple machines.
Moreover, the performance of FineStore decreases in the
distributed systems, since the clients spend extra RTTs on
determining the data locations in the level bins.

To provide high performance in the distributed systems,
we enable FineStore to avoid the aforementioned challenges
via two techniques, including the pipeline operations and
the extended RCU barrier.

4.1 Pipeline Operations
FineStore leverages the pipeline operations to access the
remote data, i.e., the clients search the trained data array and
determine the target level bin, while the servers access the
determined level bin for further operations. Such designs
achieve an efficient tradeoff between the network penalty
and the computing resources consumptions of servers, since
the clients only consume one RTT to search the trained data
array and most computing tasks have been offloaded from
servers to clients.

Initially, the servers train models according to the data
distribution and store data in the trained data array, while the
clients locally cache the whole index structures. To process
different data requests, the clients calculate the data locations
using the cached learned indexes, and obtain the predicted

data from servers via one-sided RDMA operations. The
obtained data are from trained data arrays, which are not
modified during the runtime and hence are consistent with
other machines. Moreover, the data modification requests
are conducted in the level bins. After determining the
target level bin by comparing the request data with the
obtained data, clients transfer the data requests to servers
for further operations. The transferring request consists
of [request type, lb addr, data], whrere the request type
represents the type of requests, including Search, Insert,
Update, Remove, and Rang requests. lb addr is the address
of the target level bin, and data represents the keys or key-
value pairs for various requests. The servers concurrently
lock the corresponding level bins to facilitate further data
operations. According to different data requests, the server
returns the data in the address lb addr and then modify the
data in the level bins for Insert/Update/Remove requests.
The servers deliver high concurrent performance, since the
level bins are bounded to two levels and the level bins under
different trained data have no data dependency.

The servers concurrently lock the corresponding level
bins to facilitate further data operations according to the
obtained data requests. The servers deliver high concurrent
performance, since the level bins only contain low-level
arrays and the level bins under different trained data have
no data dependency.

4.2 Extended RCU Barrier

FineStore retrains a small model on the full level bins,
and further merges the small models using the proposed
model retraining, as shown in Section 3.3. To ensure the
data consistency among different machines when updating
the index structures, we extend the RCU barrier for the
distributed systems.

Specifically, new models are retrained on the servers in
the background, i.e., constructing new trained data arrays
in the newly assigned space by merging the covered trained
data arrays. During retraining, FineStore processes the
modifications in the level bins. We append the pointers of
the level bins under the new trained data arrays to guarantee
that the new models correctly identify the modified data.
After retraining, we cannot remove the old models and
replace them with the new ones, since other machines
concurrently access remote data using the stale models before
synchronizing new models from servers. Instead, we update
the models in two steps. First, we change the model pointers
from the old models to the new ones, and do not remove the
old models and the covered trained data arrays. At the same
time, we set a counter to record the number of machines
identifying new models. Second, we lazily remove the stale
models when all machines identify the new models according
to the counter.

In this case, no data are lost since new models identify the
data modifications via the pointers of the level bins. Different
machines contain the consistent data, since the new models
share the level bins with the old ones, which enables the
machines to cache stale models and correctly identify the new
data. Moreover, the servers do not reclaim the old trained
data arrays until all machines update the index structures.
The remaining old trained data arrays consume acceptable
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Figure 8: Throughputs on YCSB with various workloads.

space, since each trained data array covers 1,400 data on
average.

4.3 durability
FineStore efficiently adopts existing logging-based scheme
to enable durability, since all modification operations are
conducted on the servers, rather than distributed systems
among servers and clients. In FineStore, different threads
write the modification operations into the log buffer, which
contains key, value and version number to avoid collisions.
One logging thread flushes the logs into the log files for
persistence. For optimization, the logger merges and batches
log entries to enable efficient durability.

5 PERFORMANCE EVALUATION

We run experiments on a Linux server (kernel version
v4.19.91) that contains one 12-core Intel(R) Xeon(R) CPU
@2.50GHz (each core with 32KB L1 instruction cache, 32KB
L1 data cache and 1024KB L2 cache) and 48GB DRAM. We
run all schemes with 24 threads to evaluate the concurrent
performance by default.

Counterparts for Comparisons. We compared our pro-
posed FineStore with state-of-the-art schemes. For the tree-
based structures, we compare FineStore with Masstree [9],
which is a variant of scalable concurrent B+-tree. Due to
different design goals, Bϵ-tree [32] is not compared since it is
optimized for less disks I/Os, rather than the memory access
in our scheme. Moreover, for the learned index schemes,
we enable RMI [15] to support scalability by adding a delta-
buffer (denoted as LI+∆), where the buffer is implemented as
a Masstree [9]. We compare FineStore with XIndex [23] and
LI+∆ [15], where their difference is that LI+∆ fails to support
concurrent retraining. FITing-tree is not compared due to
failing to support concurrent operations, e.g., concurrent
writing and retraining. We run the codes of ALEX and
PGM-index with a single thread, but do not run them
with multiple threads due to the thread collisions that
come from their slot contentions [21], [22]. The core dump
occurs when there are insufficient empty slots, since different
threads construct multiple trained data arrays, respectively
redistribute data and retrain new models, which incur severe
data inconsistency issues.

Configurations. For the compared counterparts, we di-
rectly run their source codes with the default configurations.
We implement a 2-stage RMI following the original work [15],
and the second stage configures 250K models like the setting

in XIndex [23] to facilitate fair comparisons. In FineStore, we
use the predefined threshold 32 (which is a suitable trade-
off to obtain high prediction accuracy and small number
of models), to train the models. The root and child bins
respectively contain 8 and 16 keys to obtain a suitable
tradeoff between the insertion capacity and search efficiency.
By default, we did not enable durability for all schemes in
our evaluations to achieve efficient index performance and
facilitate fair comparisons.

Benchmarks. (1) YCSB, a benchmark with six different
workloads (A-F), including update heavy (A), read mostly
(B), read only (C), read latest (D), short ranges (E) and read-
modify-write (F). All workloads contain 100 million data with
both Uniform and Zipfian distributions. (2) Weblogs contains
127 million unique log entries and we use the timestamps
as the indexes. (3) DocId contains five text collections in
the form of bags-of-words, which has nearly 10 million
instances in total. We also use 2 synthetic datasets with
200 million items to evaluate the behavior of FineStore in
depth: (4) Normal distribution with µ=4 and σ=2, and (5)
Lognormal distribution with µ=0 and σ=2. All generated
keys are scaled up to [0, 1012] as integers for evaluations.
The CDFs of the used benchmarks are shown in Figure 1b.
We configure all benchmarks with 8-byte keys and value-
pointers (i.e., the pointers refer to the variable-length values),
since existing systems support up to 8-byte computations for
ML models [15], [23].

5.1 The Throughput via YCSB
Figure 8 shows the throughput of different schemes on
YCSB with Uniform and Zipfian distributions. In general,
FineStore significantly improves the throughput on dynamic
workloads over other schemes, as well as achieving higher
throughput on static workloads due to the optimized model
layout and high model accuracy.

Static workloads (YCSB A, B, C, F). The data dis-
tributions of the static workloads won’t change during
runtime, since most requests are reading (e.g., workload
C) or updating the values (e.g., workloads A, B, and F).
In these cases, FineStore achieves comparable (even a little
better) throughput than LI+∆ and XIndex, since FineStore
searches fewer models in the optimized layout and efficiently
finds the data with higher model accuracy.

Dynamic workloads (YCSB D, E). FineStore delivers
higher throughput than other schemes on the dynamic
workloads. Specifically, FineStore outperforms LI+∆, XIndex,
and Masstree by 1.7×, 1.6×, and 2.3× on workload D.
Because FineStore incurs few data movements and has low-
probability thread collisions during insertion, while LI+∆,
XIndex, and Masstree incur high overheads to traverse the
trees. Moreover, FineStore further improves the throughput
by up to 3.2×, 2.7×, and 2.1× over LI+∆, XIndex, and
Masstree on workload E. The main reason is that LI+∆ and
XIndex handle new inserts in the delta-buffer, which has data
overlapping with the original trained data array and fails to
keep all data sorted.

5.2 The Throughput with Heavy Writes
We evaluate the scalability throughput under heavy writes.
In the experiments, we randomly sample a fraction of data
to train the learned structures, and the data distribution does
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Figure 9: The scalability throughput in various scenarios, which are evaluated on the lognormal dataset.
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Figure 11: The throughputs on skewed workloads.

not change during insertion. We also insert these sampled
data into Masstree for fair comparisons.

The number of threads. Figure 9a shows the insert
throughput with different threads. We observe that FineStore
improves the insert throughput by up to 1.6×, 1.3×, and
2.0× over LI+∆, XIndex, and Masstree when the number
of threads increases. FineStore obtains more performance
improvements with more threads, since FineStore reduces
the thread collisions by inserting the data into the flattened
level bins.

The number of the inserted data. The number of
the inserted data to the trained data is defined as Insert
Factor, which clearly differentiates the inserted data from
the trained data for the learned structures. Figure 9b shows
the throughput of inserting different numbers of data. We
observe that the insert throughput of FineStore is low at the
beginning due to consuming time on allocating the level bins
for each trained data. When inserting more data, FineStore
improves the throughput by up to 1.5×, 1.2×, and 1.3× over
LI+∆, XIndex, and Masstree. The main reason is that the
level bins incur few data movements during insertion and
handle inserts up to nearly (m ∗ n) times (m and n represent
the slot numbers of root and child bins) more than the trained
data without retraining. However, the delta-buffer in LI+∆
and XIndex incurs high overheads to iteratively split the
nodes with massive data movements. The data dependency
among nodes further hinders the concurrent performance
during insertion.

Insertion with frequent retraining. Figure 9c shows
the throughput timeline when inserting more than 1000×
data than the trained data. In this case, the learned models
are frequently retrained to learn the new data distribution
for high accuracy. We observe that FineStore improves the
insert throughput by about 1.8× over other schemes. Because
FineStore concurrently adapts to the new distribution by
efficiently executing the level-bin retraining and model
retraining.

5.3 Throughput with Read-Write Workloads
The search performance after inserts. The learned structures
offer high search performance on the static workloads,

which are important even after inserting a large number of
data. Figure 9d shows the search throughput after inserting
different numbers of data. We observe that LI+∆ and XIndex
decrease the search performance after heavy writes, since
they have to spend extra time on searching the delta-buffers.
The performance further decreases when the buffer becomes
large. The performance of FineStore also decreases after
inserts, since the size of the level bins increases when we
constantly insert data. However, FineStore provides higher
search performance than other schemes, since we bound the
level-bins to two levels via retraining. We have the similar
observations and insights on other benchmarks, as shown in
Figure 10.

Different read/write ratios. Figure 13 shows the through-
put with various read/write ratios. We have the similar
observations with previous evaluation results, i.e., FineStore
delivers high performance on both static and write-intensive
workloads.

5.4 Throughput with Skewed Workloads

The data distribution may change, e.g., reading/writing data
in a certain range, rather than accessing the data evenly
following the trained pattern. The accessed range divided by
the range of trained data is defined as Hotspot Ratio, where
the smaller hotspot ratio represents the larger skewness.
Figure 11 shows the insert and search throughputs on
the skew workloads. We observe that both FineStore and
XIndex show low performance when the skewness is large,
since more thread collisions occur and more retrainings are
necessary. As the skewness decreases, FineStore achieves
higher performance than other schemes, due to retraining
the data-intensive part and assigning a large amount of level
bins. After several retrainings, FineStore flattens the skewed
data and adjusts to the new data distribution, thus decreasing
the thread collisions.

5.5 In-depth Analysis for FineStore

To examine where the performance improvements come, we
leverage Control Variates [33] to evaluate different compo-
nents of FineStore, and the results are shown in Figure 12. In
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general, the most benefits come from the flattened data part
and concurrent retraining.

Model part. Figure 12a shows the performance of the
model part. In this experiment, all data are stored in the
trained data array and we won’t insert any data. We
observe that FineStore doesn’t obtain significant performance
improvements, compared with other learned schemes, since
the models of all learned structures keep high accuracy when
there are no inserts.

Data part. Figures 12b-d show the performance of the
data part. In these experiments, we only use one model
to mitigate the influence from the model layout. From
Figure 12b, we observe that the level bins improve the
insertion performance by about 1.8× than the delta-buffer
with a single thread, and further improves about 2× with
more threads. The reason is that the non-shared level bins
have low data dependency among each other and incur few
thread collisions in concurrent systems. After a large number
of inserts, the level bins respectively improve about 2.1× and
3.2× point/range query performance than the delta-buffer,
as shown in Figures 12c and 12d, since the level bins keep
all data sorted.

Retraining frequency. Figure 12e shows the retraining
frequency when new data are constantly inserted. We observe
that the scheme with a delta-buffer incurs more retrainings
than FineStore, since the delta-buffer is shared by all data cov-
ered by one model and becomes large during the insertions.
Unlike it, FineStore adjusts to the new data distribution after
several retrainings and requires less retrainings later. Because
FineStore amortizes the insertions into multiple small-sized
level bins and processes more inserts with high performance.

5.6 Overheads Analysis
5.6.1 Training Latency
Figure 14 shows the latency to train different structures,
and the latency to train Masstree is evaluated by inserting
the trained data into the tree. We observe that FineStore
incurs low latency to train the model, which outperforms
LI+∆ and XIndex by up to 1.3× and 8.9×. Specifically, the
LPA algorithm [34] greedily trains data and obtains fewer
models than other schemes during training. However, the

RMI scheme needs to traverse all data multiple times due
to the level-by-level training strategy [15]. The complexity
to train XIndex is higher than RMI, depending on the data
distributions, since XIndex needs to train RMI multiple times
to improve the accuracy.

To dynamically adapt to the new data distribution,
FineStore performs retraining in two granularities, including
level-bin retraining and model retraining. The level-bin
retraining consumes 27µs to train the full level bins in our
experiments. Although model retraining consumes more
time (e.g., 1.5ms on 10K data), the latency doesn’t affect
other concurrent operations, since we perform the model
retraining in background.

5.6.2 Memory Overheads

Figure 15 shows the memory usage of FineStore on various
workloads. In general, the memory usage of FineStore
consists of three parts, including the trained models, the
trained data array and level bins. Among them, the trained
models occupy about 2% of the total memory consumption,
e.g., consuming no more than 10MB space to store models
when training 2∗108 lognormal data. The trained data arrays
contain all the trained data, while the level bins store the new
data, and these two kinds of structures are the main memory
consumptions. In the distributed environment, the servers
require a large amount of memory to store the models and
data, while the clients only need to cache the learned models
to save space. Hence, the clients have the capability to cache
the full learned indexes. Moreover, although the level bins
contain empty slots, FineStore allocates one bin as needed
during the runtime, and fully leverages existing allocated
bins to achieve high space utilization.

In the distributed systems, the clients locally cache the
metadata, which are evaluated in Figure 16, including the
sizes of ML models in the learned structures and the memory
consumptions of inner nodes in the tree-based schemes. From
the results, we observe that all learned structures consume
less memory than tree-based schemes by up to two orders-
of-magnitude, since one linear regression model is enough
to index the same linearly distributed data while the trees
need to construct multi-level inner nodes.
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Figure 17: Throughputs on YCSB in distributed systems.

5.7 Performance in Distributed Systems

We deploy FineStore on a cluster with 4 machines to evaluate
the performance in the distributed systems, including 1
server and 3 clients. Each machine is equipped with two
26-core Intel(R) Gold 6320R CPUs @2.10Ghz, 128GB DRAM,
and one 100Gb Mellanox ConnectX-5 IB RNIC.

We compare FineStore with 3 state-of-the-art distributed
ordered KV stores, including EMT [26] (i.e., the distributed
Masstree using RDMA), Cell [30], and XStore [24]. Among
them, EMT maintains a Masstree on the servers, and relies on
the servers to process all requests by transferring requests to
servers. Cell caches partial inner nodes of B-tree on clients to
speed up the index operations, which however has to spend
multiple RTTs on traversing the B-tree due to not caching the
whole structure. XStore leverages the hybrid index structures
to process the index operations, which caches the learned
indexes on clients to access the remote data while leveraging
the B-tree on servers to process the modifications. Unlike
them, FineStore achieves high scalability by deploying a
concurrent learned index scheme on both servers and clients.

Figure 17 shows the performance of different schemes in
distributed systems using various YCSB workloads.

Read-only workloads (YCSB C). FineStore delivers
competitive performance with XStore and achieves higher
read performance than other schemes by up to 2.4x, due
to enabling the efficient one-sided RDMA read operations.
Unlike it, Cell has to spend multiple network roundtrips on
reading remote data, while EMT has to transfer the requests
to the remote server and wait for the returned results.

Read-write workloads (YCSB A, B, D, E, F). FineStore
achieves higher write performance than other schemes by
up to 1.7x on the read-write workloads. The main reason is
that FineStore efficiently processes different index operations
via the pipeline operations, which alleviates the computing
burden of servers by offloading the computing tasks to the
clients.

Performance of using hybrid read-write workloads.
Figure 18 shows the throughput with various read/write
ratios. In general, FineStore respectively improves the per-
formance by 1.5×, 2.2×, and 1.3× over EMT, Cell, and
XStore when configuring large write ratios, since FineStore
incurs fewer thread collisions via the flattened data structure.
The performance of EMT is limited by the Masstree due to
transferring all data requests to servers, while the Masstree
delivers low performance due to the dependency among

inner nodes. Cell and XStore efficiently leverage the cached
index structures to access the remote data, which however
decrease the performance with large write ratios, due to
transferring requests to servers and relying on the tree-based
structures to process data modifications.

Performance with intensive writes. Figure 19 shows
the throughput under intensive writes. In our evaluations,
we constantly insert different numbers of data, and observe
that FineStore improves the insert performance by up to
1.9×, 2.7×, and 1.4× than EMT, Cell, and XStore. The
main reason is that FineStore efficiently process the data
modifications via the concurrent learned index scheme, while
other schemes rely on the inefficient tree-based structures
to process various data requests. Moreover, FineStore incurs
low latency since the flattened data structure enables high
concurrent operations with few thread collisions.

The proposed extended RCU barrier is used to guarantee
the consistency among different machines when concurrently
retraining models. With the extended RCU barrier, different
machines concurrently access remote data with the cached
learned indexes, as well as updating the cached models when
identifying new models. Without the extended RCU barrier,
FineStore has to adopt the lock-based schemes to ensure
the data consistency when updating the retrained models.
Figure 20 shows the results of using the extended RCU
barrier and the remote locks. From the results, we observe
that the extended RCU barrier significantly improves the
system performance when inserting a large number of data,
due to not blocking the systems when updating the models.

To show the benefits of the proposed pipeline operations,
Figure 21 shows the performance of different schemes
to conduct index operations on the lognormal dataset,
including the schemes that purely conduct all operations
on clients and transfer data requests to servers. From the
results, we observe that compared with the purely on-
client scheme, the pipeline operations reduce the network
roundtrip penalty due to transferring the data requests to
the servers. Specifically, the purely on-client schemes require
multiple network roundtrips to determine the data locations,
and require multiple network roundtrips to guarantee the
data consistency among different machines. Compared with
the purely on-server scheme, the pipeline operations alleviate
the computing bottleneck on the servers due to offloading
some computing tasks onto the clients. Specifically, the purely
on-server scheme transfers all operations to the servers and
waits for the replies of the server. Unlike them, the pipeline
operations conduct the prediction operation on the clients,
while the server only need to conduct further operations in
the predicted range.

6 RELATED WORK

The Learned Structures for Memory Systems. The learned
index [15] leverages the powerful calculations to replace
the traditional expensive memory consumption. To support
the insertion operation, ALEX [21] reserves the slots for
new inserts and synchronously allocates a new data array
when there are no enough slots. PGM-index [22] obtains
the temporal and spatial trade-off via an optimal number
of linear models. FITing-tree [20] uses B+-tree as a buffer
to process the inserts. XIndex [23] uses the concurrent
Masstree [9] as the delta-buffer and concurrently compacts
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Figure 18: Hybrid
read/write throughput.

Figure 19: Write-intensive
throughput.
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Figure 21: Benefit analysis for
the proposed FineStore.

the buffer with the trained model at runtime. Unlike them,
RadixSpline [35] builds the index structure fast, as well as
showing efficient lookup performance. SOSD [36], [37] and
CDFShop [38] show the advantages of learned structures over
tree-based structures. Instead of using the workload-driven
approach, DeepDB [39] proposes a new data-driven approach
for learned DBMS. In the KV systems, BOURBON [40]
coalesces the learned index with the LSM-based key-value
store to deliver high performance. XSTORE [24] leverages
the learned index to improve the performance of network-
attached in-memory key-value store. Moreover, Tsunami [41]
achieves efficient search performance by using learned multi-
dimensional indexes, while LISA [42] learns the spatial data.

Tree-based Structures for Memory Systems. Traditional
tree-based structures have been implemented with the
support of hardware, including cache, SIMD and GPUs [6],
[7], [7], [43], [44]. Bϵ-tree [32] improves write performance
via asynchronous writes to disks with less I/Os. Masstree [9]
uses fine-grained locks to provide concurrent operations.
Wormhole [45] replaces the inner nodes of B+-tree with
a hash-table encoded Trie to process the variable lengths
of keys. µTree [46] shows low tail latency than other tree-
based schemes on persistent memory. Several schemes focus
on compressing indexes to reduce the sizes of keys via
prefix/suffix truncation, dictionary compression and key
normalization [47], [48].

7 CONCLUSION

In this paper, we propose a fine-grained learned index
scheme for concurrent and distributed systems, called Fine-
Store. To achieve the scalability, the inserts are processed in
the level bins under each trained data. Moreover, FineStore
concurrently adapts to the new data distribution with non-
blocking retraining, as well as ensuring the data consistency.
Our experimental results show that FineStore respectively
improves the performance by up to 1.8× and 2.5× over the
learned-based and tree-based structures. We have released
the source codes for public use in GitHub.
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