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Abstract—Efficient key-value (KV) store becomes important for
concurrent and distributed systems to deliver high performance.
The promising learned indexes leverage deep-learning models to
complement existing KV stores and obtain significant performance
improvements. However, existing schemes show limited scalability
in concurrent systems due to containing high dependency among
data. The practical system performance decreases when inserting
a large amount of new data due to triggering frequent and inef-
ficient retraining operations. Moreover, existing learned indexes
become inefficient in distributed systems, since different machines
incur high overheads to guarantee the data consistency when the
index structures dynamically change. To address these problems
in concurrent and distributed systems, we propose a fine-grained
learned index scheme with high scalability, called FineStore, which
constructs independent models with a flattened data structure
under the trained data array to concurrently process the requests
with low overheads. FineStore processes the new requests in-place
with the support of non-blocking retraining, hence adapting to the
new distributions without blocking the systems. In the distributed
systems, different machines efficiently leverage the extended RCU
barrier to guarantee the data consistency. We evaluate FineStore
via YCSB and real-world datasets, and extensive experimental
results demonstrate that FineStore improves the performance re-
spectively by up to 1.8× and 2.5× than state-of-the-art XIndex and
Masstree. We have released the open-source codes of FineStore for
public use in GitHub.

Index Terms—Computers and information processing,
computer architecture, data structures, distributed computing.

I. INTRODUCTION

E FFICIENT data storage and access are important to deliver
high system performance, which however are exacerbated

by the explosive growth of data. Existing index structures, such
as B+-tree [2], Hash-map [3], and Bloom filters [4], usually
support in-memory systems to handle data processing tasks in
a memory-efficient manner over the past decades [5], [6], [7],
[8], [9].
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In general, tree-based structures keep all data sorted for range
queries, which aim to identify the items within a given range.
Many systems, such as NoSQL systems (e.g., MongoDB [10]),
IBM DB2 [11], LevelDB [12] and PostgreSQL [13], construct
tree-based structures to provide efficient data storage and access.
However, the trees deliver low search performance when storing
a large amount of data, due to the expensive pointer jumping
among multi-level inner nodes. Moreover, the high space over-
head becomes exacerbated once the index structures are too large
to fit into the limited-size memory [14].

Unlike them, Kraska et al. [15] argue that exact data distri-
bution enables efficient optimizations for index structures. For
instance, a linear regression function is sufficient to store and
access a set of continuous integer keys (e.g., the keys from 1
to 100 M), which has significant advantages over traditional
B+-trees in terms of lookup performance and memory overhead.
The patterns of data distributions become important for memory
systems to deliver high performance. However, some patterns are
extremely complex or even impossible to be accurately repre-
sented via known patterns. In the context of our paper, a known
pattern is the data distribution that could be represented via one
known mathematical function, such as the linear distribution.
Instead, the extremely complex pattern has to be partitioned
into multiple parts and represented via multiple mathematical
functions, such as the data distributions of real-world datasets,
e.g., processing the data of smart devices [16], the petabyte-scale
storage systems of Facebook [17], [18] and LMDB [19]. We
consider machine learning (ML) approaches to learn a model
that exhibits the patterns of data distribution, called learned
indexes [15]. The learned indexes open up a new research topic
on indexing in memory systems: Indexes can be considered as
machine learning models.

In the concurrent and distributed systems, we use cost-
efficient computations to speed up traditional comparisons,
thereby increasing access speed and saving memory space. The
inefficiency of the traditional comparisons comes from the cache
misses when accessing different data from different locations.
Specifically, the traditional B+-tree searches data via traversing
the nodes, which adopts multiple comparisons to determine
the node to be accessed next and significantly decreases the
performance when sufferring from multiple cache misses. The
concurrency in the context of this paper is interpreted as that
the index operations (e.g., read and write data) are executed by
using multiple threads. However, it is non-trivial to efficiently
leverage learned indexes for concurrent and distributed systems
due to the following challenges.
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1) Limited Scalability and Concurrency: The scalability re-
quires the learned indexes to efficiently handle inserts
and adjust to the new data distributions at runtime, as
well as scaling to multiple threads for high concurrent
performance. However, existing schemes show limited
scalability since they do not simultaneously meet all these
requirements, including concurrent reading, writing and
retraining. For example, FITing-tree [20], ALEX [21] and
PGM-index [22] do not consider the data consistency
issues to concurrently retrain the models in the multi-core
systems. XIndex [23] stores the data into different data
structures, hence not keeping all data sorted for efficient
range query performance.

2) Long Tail Latency under Heavy Writes: Existing schemes
incur long tail latency in concurrent and distributed sys-
tems due to the heavy data dependency. Specifically,
XStore [24] maintains a B-tree on the server and relies
on the B-tree to process the modifications. The servers
have to traverse multi-level inner nodes of the tree, in-
curring long latency to obtain the required data. More-
over, deploying existing scalable learned indexes in the
distributed systems fails to decrease the tail latency due to
the inefficient share-based data structures. Among them,
XIndex [23] and FITing-tree [20] handle inserts through
a delta-buffer, which is a tree-based structure [9] (e.g.,
B+-tree or Masstree) and has high dependency of inner
nodes when traversing the tree. ALEX preserves empty
slots in the trained data arrays to handle inserts, which
incur many thread collisions due to the contentions for the
available slots during insertions. PGM-index recursively
merges multiple sets for insertions, which becomes inef-
ficient when multiple threads concurrently write a large
number of data due to competing for merging the sets.

3) High Overheads for Consistent Guarantees: The data con-
sistency requires that the newly inserted or modified data is
correctly identified by all machines. However, the learned
indexes record the data positions during the training phase
and fail to perceive the new data positions when differ-
ent machines frequently modify (e.g., insert and delete)
the data. Existing learned index schemes have to retrain
the models to record the new data positions, which is a
time-consuming operation. The challenge is how to ensure
the data consistency among different machines without
blocking other index operations.

In order to address these challenges, we present a fine-grained
learned index scheme for concurrent and distributed systems,
called FineStore. Our proposed FineStore achieves high con-
currency via a fine-grained index structure, which appends the
low-overhead level bins under each trained data to alleviate the
data dependency. By using such flattened structure, FineStore
mitigates the thread collisions and achieves efficient scalability.
In fact, the used level bins are two-level sorted arrays, which
are used to efficiently handle inserts while keeping all data
sorted to support range queries. During the runtime, FineStore
concurrently retrains data in two granularities to adjust to the
new data distribution without blocking the system. In the dis-
tributed system, the clients efficiently identify the locations of

remote data via the cached index structures, which incur low
overheads of network roundtrips due to the efficient calculations.
Moreover, we extend the RCU barriers in the distributed system
to enable the stale cached indexes to correctly identify the modi-
fied data. Our experimental results show that FineStore improves
the insertion performance respectively by about 1.8× and 2.5×
than state-of-the-art XIndex and Masstree, while consuming less
memory space.

It is worth noting that the mentioned models are interpreted
as linear regression ML models with bounded prediction errors,
which predict the positions of the keys. To ensure that no data are
lost in the system, the bounded prediction errors are determined
by the data that is farthest from the central function. We use
multiple small models, rather than a complex model, to learn
the data distribution, since multiple small models are flexible
and efficient for system scalability [15], [20], [23].

In this paper, we have the following contributions.
� High scalability meeting system requirements: We present

a fine-grained learned index scheme for concurrent and dis-
tributed systems, i.e., FineStore,1 which efficiently meets
the scalability requirements and provides high concurrent
performance with low overheads. The main insights are to
weaken the data dependency via the flattened data struc-
tures and concurrently retrain the models without blocking
the systems.

� High performance for cost-efficient index operations: The
index operations (i.e., read and write) are cost-efficient,
since FineStore incurs a few data movements during
insertion and keeps all data sorted for accessing. For
write-intensive workloads, FineStore alleviates the thread
collisions by weakening the data dependency. In the dis-
tributed systems, the clients efficiently access the remote
data via calculating the cost-efficient learned models.

� Low overheads for consistent guarantees: FineStore con-
currently retrains models in two granularities, which not
only supports concurrent operations during retraining, but
also guarantees that the new models identify the data
modified by other threads. Moreover, the server leverages
the extended RCU barrier to enable the clients to correctly
identify all data via the stale index structures.

II. BACKGROUND AND MOTIVATION

A. New Perspectives on Indexes

From the perspective of machine learning, the range index
structures are considered as regression models [15], which
predict the position of a given key, as shown in Fig. 1(a). In
the B+-tree, the data are found through traversing the tree.
A learned index [15] views this process as a prediction and
supports range queries, which requires the data to be sorted, thus
facilitating efficient data access. The records between [pred−
max_err, pred+max_err] are the analogy with the leaf
nodes in the B+-tree. The length of [pred−max_err, pred+
max_err] is related with the lookup performance.

1The source codes of FineStore are available at https://github.com/iotlpf/
FINEdex.
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Fig. 1. Learned index model and structure.

In order to provide practical and accurate prediction, the
sorted keys and true positions are respectively considered as the
inputs and outputs. The relationship between keys and positions
is a monotonically increasing curve and similar to a cumulative
distribution function (i.e., CDF, which helps to learn the data
distribution) [15], [23]. Based on this observation, the prediction
accuracy can be improved by learning the patterns of data
distribution.

Using a single ML model to achieve high prediction accu-
racy is difficult, which results in complex ML models. In the
meantime, it is hard to design and train this type of models
due to the unacceptable training overheads. The learned indexes
propose a recursive model index (RMI) [15], [25] to improve
the prediction accuracy, which gradually reduces the prediction
ranges via multiple small ML models. The main idea of RMI is
to build a model hierarchy and predict the positions of keys via
trained models [15]. As shown in Fig. 1(b), the RMI consists of
3 stages, respectively containing 1, 2 and 3 ML models. These
models are trained in the order of hierarchical relationships,
each of which is trained with different data. For example, Model
1.1 in the top level is trained first with the whole dataset. Based
on the prediction results of Model 1.1, either Model 2.1 or
2.2 is selected and the entire dataset is also divided into two
subdatasets according to the selection results. The two models
in the second stage are trained with their individual subdatasets.
The next stage follows the similar training process. In order to
accurately find the queried key, the learned indexes store the
absolute max_error for each model in the last stage, which is
calculated as follows:

max_err = max(abs(yi − f j
L(x))) ∀i ∈ SL.j , j ∈ ML,

(1)
where yi represents the true position of each key in the subdataset
SL.j , f j

L(x) represents the prediction result of jth model in the
last stage L and there are Ml models in stage l. If max_err is
larger than the predefined threshold, the ML model becomes in-
valid to be replaced with a B+-tree. Finally, learned indexes show
the prediction accuracy [pred−max_err, pred+max_err] if
the picked ML model is valid, otherwise searching the B+-tree.

B. Concurrent and Distributed Indexes Requirements

In concurrent and distributed systems, multiple threads of
different machines access the index structures to process various
index requests, which require the indexes to efficiently support

TABLE I
LIMITED SCALABILITY OF EXISTING SCHEMES

high concurrency, guarantee the data consistency, and provide
high performance.

Efficient Concurrency: Providing concurrent operations be-
comes important in the systems that scale to a large number
of cores and threads. No or few thread collisions are gener-
ally helpful to improve concurrent performance, especially for
the learned indexes to insert and retrain new data at runtime.
However, it is non-trivial to concurrently retrain the learned
indexes, since the retraining consumes a long time to block other
operations on resorting and retraining the data.

Strong Data Consistency: Guaranteeing the data consistency
becomes a foundational requirement to prevent the data loss.
However, frequently modifying data decreases the model ac-
curacy of the learned indexes, since the learned models record
the data positions during the training phase and fail to perceive
the new data positions unless retraining. The challenge is how
to ensure the data consistency without blocking concurrent
operations.

High Performance: As an ordered index structure, all data
need to be kept sorted during insertion for efficient range query
performance. Otherwise, we need to search the queried data
multiple times, incurring long latency. Moreover, the index
structure should maintain low data dependency to avoid the
thread collisions for high concurrent performance.

In the distributed systems, incurring few network roundtrips
among different machines becomes important to meet the high-
performance requirements. The promising Remote Direct Mem-
ory Access (RDMA) network enables one machine to directly
access the remote memory without involving the remote CPUs,
which provides high throughput and low latency for data access-
ing [24], [26], [27]. However, deploying tree-based structures
in the distributed system becomes inefficient, since the clients
have to spend multiple network roundtrips on traversing the
inner nodes and the dependency among inner nodes increases
the thread collisions when modifying the data.

C. The Inefficinecy of Existing Schemes

Various learned indexes leverage different strategies to sup-
port scalability, including FITing-tree [20], ALEX [21], PGM-
index [22] and XIndex [23], which however show limited scala-
bility, as shown in Table I. Specifically, FITing-tree and XIndex
handle inserts in the delta-buffers. Their differences are that
XIndex uses a concurrent delta-buffer (i.e., Masstree [9]) and
supports concurrent retraining, as shown in Fig. 2(a). Although
handling inserts in the delta-buffer won’t affect the trained data
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Fig. 2. Structures of XIndex and FineStore. FineStore consists of model and data parts.

and guarantees the data correctness during insertion, such design
is inefficient due to storing the data in two different structures.
XIndex [23] shows that the search performance decreases about
3× when the delta-buffer becomes large, due to checking both
learned indexes and delta-buffer in each index operation. More-
over, when scaling to multiple threads, the use of delta-buffer
increases the thread collisions due to being shared by all the data
covered by the model. The delta-buffer is a tree-based structure,
which has high dependency among inner nodes during travers-
ing the tree. To improve the performance, XIndex proposes a
Two-Phase-Compact technique to enable concurrent retraining,
which concurrently compacts the delta-buffer in the learned
indexes without blocking the systems. However, such design still
suffers from the inefficient delta-buffer, which handles inserts by
constructing another delta-buffer during retraining.

In ALEX, we leverage empty slots in the trained data array
to handle inserts in-place. During insertion, existing data in the
trained data array are moved backward to the empty slots for
the new data. At the same time, we check the trained model
and expand the prediction error as needed to avoid the error
that some data are moved out of the prediction range. Unlike it,
PGM-index allocates multiple empty sets and merges different
sets to handle inserts. However, such designs become inefficient
when scaling to multiple threads, since different threads compete
for the shared empty slots and the pre-allocated empty sets dur-
ing insertion. Moreover, when there are insufficient empty slots,
ALEX and PGM-index fail to support concurrent retraining.
Before the retraining completes, we cannot concurrently insert
new data, since the new model under retraining fails to perceive
the error that some data are moved out of the prediction range
during insertion. To guarantee the data consistency, the thread
conducting retraining blocks the system for a long time, which
significantly decreases the concurrent performance.

III. THE FINESTORE DESIGN

In this section, we present the design of FINE-grained scalable
learned index, or FineStore, for concurrent memory systems.
The key insight of achieving high concurrent performance is
to reduce the dependency among data, as well as mitigating
conflicts among threads. Based on these principles, FineStore
handles inserts in the non-shared level bins and concurrently
retrains models in two granularities, including the level-bin
retraining and model retraining. Specifically, the level bins are
2-level sorted arrays appended behind each trained data, as

shown in Fig. 2(b). Such flattened data structure significantly
reduces the numbers of thread collisions, since the level bins
behind different trained data have no data dependencies. The new
data are inserted into the level bins according to the order to keep
all data sorted. At the same time, existing trained data are not
affected by the new data, which guarantees that no data are lost
during insertion. When the level bins are full, we concurrently
retrain the data in two granularities to adjust to the new data
distribution at runtime, including the level-bin retraining and
model retraining. The former retrains the full level bins to obtain
a small model, while the latter merges small models to improve
the performance. After retraining, the old models are easily
replaced with the new ones, since all models in FineStore are
independent. Through these designs, FineStore achieves high
concurrent performance using multiple threads.

A. Model Part

1) The Learning Probe Algorithm: To overcome the short-
comings of previous strategies, our paper proposes the learning
probe algorithm (LPA), which uses the greedy strategy to adap-
tively partition the data according to the data distribution. In
LPA, only the same linearly distributed data are divided into the
same subdataset. Therefore, each subdataset is easily learned
by a linear regression model. The criterion for judging whether
the data have the same distribution is to examine if the error of
the obtained model exceeds a predefined threshold. If the error
of obtained model is smaller than this threshold, LPA will add
more data to the subdataset, otherwise remove a small amount
of data in the order from back to front until the remaining data
are linearly distributed. The complete process of LPA is shown
in Algorithm 1.

Before using LPA, we need to configure some parameters in-
cluding threshold, learning_step and learning_rate, where
threshold is the max error of the model we can tolerate,
learning_step and learning_rate are used to determine the
learning speed. As shown in Algorithm 1, the main component
of LPA works like a probe, which first walks forward for a
large step of length learning_step, i.e., add learning_step
data from the training dataset record into a small dataset S (line
2). Then, we obtain a linear regression model on dataset S and
calculate the prediction error of the model (lines 3 and 4), where
min_err and max_err are calculated by (1). The prediction
error of the obtained model determines the next operation of the
probe. If error < threshold, the probe keeps moving forward
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Fig. 3. Setting different thresholds to train models.

to another learning_step to obtain a new model until the error
of obtained model is not smaller than threshold (lines 5-8).
When error > threshold, the probe keeps moving backward
with a smaller step until the prediction error of the obtained
model is not larger than threshold (lines 9-13). The smaller
step is determined as follows:

small_step = learning_step ∗ learning_raten, (2)

where learning_rate ∈ (0, 1), and n ∈ (1, 2, 3. . .) represents
that the probe iteratively moves backward with much smaller
steps. Finally, LPA appends the model to FineStore and cleans
the dataset S for next probing (lines 14 and 15).

Unlike RMI, all the model errors in LPA are smaller than
the predefined threshold, since LPA trains data according to the
data distribution and only the model whose prediction error is
not larger than threshold can be appended to FineStore. The
max-error of each obtained model is controlled by the predefined
parameter threshold. The time complexity of LPA depends
on the data distributions, which has O(N) complexity in the
best case and O(N2) in the worst case, where N represents the
number of the trained data.

In FineStore, a small threshold ensures that the learned models
predict the positions in a small range, hence providing high
prediction accuracy. However, setting a small threshold needs
to train a large number of linear regression models, since a few
linear regression models fail to accurately represent the compli-
cated real-world data distributions. As shown in Fig. 3, decreas-
ing the threshold from 128 to 4 increases the number of models
by more than 100 times, which results in low performance
to search the models, since FineStore stores the independent
models in the B-tree and a large number of models increase the
height of the B-tree. From the evaluation results, we observe that
32 is an efficient trade-off between the prediction accuracy and
the model numbers. Therefore, we use the predefined threshold
32 to train the models.

2) Optimized Model Layout: The model layout is interpreted
as the organization structure for storing models, which affects the
scalability and the performance of finding models. Unlike RMI
that has heavy model dependency among different levels, our
FineStore trains independent models to enable high scalability.

The total number of models trained by LPA is small, which
is competitive with PGM-index, since LPA greedily trains
the models according to the data distributions, as shown in
Table II. Hence, we store the piecewise models as a cache-
/SIMD-optimized btree (i.e., align the btree node with cacheline
and search the node with SIMD instructions) to enable system

TABLE II
NUMBERS OF MODELS OF DIFFERENT SCHEMES ON VARIOUS

WORKLOADS

Algorithm 1: LPA Algorithm.

scalability and deliver high performance. The models are stored
as < key,model > pairs, where key is the largest trained data
covered by each model and model is a pointer to the model.
The number of models in RMI is manually set, since RMI fails
to adaptively assign the number of models according to the
data distribution. As XIndex shows that 250 K models in RMI
achieve the best performance, we also configure 250 K models
to facilitate fair comparisons.

B. Data Part

We propose the structure of level bins under trained data to
process the modifications. The structure of the level bins is a
modified two-level B-tree as shown in Fig. 2(b). The horizontal
blocks represent the root bins and the vertical blocks represent
the child bins. When the two-level bins are not full, the new
data are inserted like a B-tree with the difference that the data
are l to be inserted into the previous child bin. The full level
bins do not grow to higher levels to avoid high data dependency
in the tree-based structures. Instead, we propose fine-grained
retraining with two granularities to accommodate more data.

Specifically, Fig. 2(b) shows how the level bins process in-
serts. At the beginning, only one bin is placed under the trained
data for space savings and other bins are constructed as needed.
For example, we construct two child bins to insert 16 when the
root bin is full. As more data are inserted, the data are prioritized
to be inserted into the previous child bin to improve the space
utilization. For example, we move existing data forward to the
first child bin when inserting 20 to improve the space utilization
of existing bins. In this case, we move at most (n+ 1) data,
wheren is the length of the child bin. When the previous child bin
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Fig. 4. Performance of adopting different schemes.

becomes full, the data is inserted like a two-level B-tree, which
moves at most (m+ n/2) data in the worst case, where m and
n respectively represent the number of slots in the root and child
bins. Each bin has 8-16 slots in our experiments to achieve an
efficient tradeoff between scalability and access efficiency. We
bound the level bins to two levels to alleviate the data dependency
among levels, and retrain the full level bins to accommodate
more data. Our experimental results show that the maximum
load factor (i.e., the number of occupied slots divided by the
total number of slots) of FineStore is about 82%, which is higher
than 75% in the B-tree.

When scaling to multiple threads, the level bins behind dif-
ferent trained data won’t block each other due to the low data
dependency, which incur few thread collisions. When the learned
structures learn the data distribution, the inserted data are likely
to exhibit the same patterns [15], and hence are inserted evenly
into all level bins. In this case, FineStore handles nearly (m ∗ n)
times more than the trained data. When the data distribution
changes, FineStore concurrently retrains the level bins to fit the
new data distribution, as shown in Section III-C.

Compared with B+-tree, level bins have lower data depen-
dency among different nodes, since level bins are bounded
to only two levels to mitigate the data dependency, while the
B+-trees commonly construct multi-level nodes and contains
high dependency among the data nodes. Moreover, the level
bins have high space utilization than B+-tree due to prioritizing
inserting data into existing child bins during the insertion. Com-
pared with hash-based structures, the level bins ensure that all
data are sorted for efficient range query performance, while the
hash-based structure randomly stores the data and fails to keep
all data sorted. Furthermore, level bins efficiently support our
proposed two-granularity retraining, while other data structures
fail.

Fig. 4 shows the operation throughput when adopting different
schemes in FineStore. From the results, we observe that level
bins deliver higher throughput to insert and access data than the
B+-trees, since the level bins efficiently support two-granularity
retraining to reduce the dependency among data during the
runtime, while the B+-tree fails.

C. Concurrent Retraining

In general, some level bins are full when more data are inserted
or the data distribution changes, e.g., the skewed workloads (i.e.,
the data are modified in certain ranges). Instead of reconstruct-
ing the indexes from scratch with high overheads, FineStore
performs retraining to adjust to the new data distribution.

Fig. 5. Challengs of different retraining strategies.

Fig. 6. Concurrent retraining. Level-bin retraining retrains full bins. Model
retraining merges the small models.

The challenge is how to ensure the data consistency without
blocking concurrent operations. For example, retraining a model
on one million data consumes up to several seconds [15], which
blocks the systems for a long time. As shown in Fig. 5, if we
retrain the model in a sequential manner, the data covered by
the model (including the trained data array and all level bins)
are blocked until the retraining is completed, which incurs high
overheads in the concurrent system. On the other hand, the data
inconsistency occurs during concurrent retraining. As shown
in Fig. 5, the new data a is successfully inserted into the old
models during retraining (i.e., t1 to t3). However, the new models
can’t find a since the new models fail to train a when the
retraining begins at t1. Moreover, it is hard to identify which
data are inserted during retraining, since the newly inserted data
are mixed with existing data during reordering. Processing the
inserts in an extra delta-buffer separates the newly inserted data
with existing data, which however fails to keep all data sorted
and degrades the overall performance with the growth of buffer
size.

To address these challenges, FineStore performs retraining in
two granularities, including the level-bin retraining and model
retraining. The former generates more space by retraining full
level bins and the latter merges small models to improve the
model accuracy and search performance.

1) Level-Bin Retraining: Retraining a model needs to retrain
all the covered data in the trained data array and the level bins.
Hence, it is expensive to retrain the whole model even if the
level bins of only one trained data are full. To address this issue,
we retrain a new model based on the data of the full bins, while
other data in the trained data array and the level bins are not
retrained. The new model is appended under the corresponding
trained data, and new level bins are created under the new model
to process the inserts, as shown in Fig. 6.

Level-bin retraining achieves high concurrent performance
since only the full level bins are locked for the data consistency,
while other data are not related. Moreover, performing level-bin
retraining is cost-efficient (e.g., 27 μs in our experiments), since
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the full level bins contain no more thanm ∗ n data, wherem and
n respectively represent the number of slots in the root and child
bins.

2) Model Retraining: The system performance decreases
when a large number of small models are iteratively created
via the level-bin retraining. In this case, FineStore merges these
small models through the model retraining to maintain high
performance.

As shown in Fig. 6, FineStore conducts model retraining by
compacting the trained data arrays of different models (i.e., the
large and covered small models, including the smaller ones).
New models are trained on the covered trained data arrays, which
are not modified by the new data according to the design princi-
ples in Section III-B. The retraining process is performed in the
background to hide the latency in the concurrent system. Dur-
ing retraining, the level bins are not affected and concurrently
process the in-place modifications without blocking the overall
system. We directly append the pointers of the level bins under
the new trained data array. After the new models are retrained,
FineStore uses the RCU-barrier [23] to ensure that all threads
access the new models. The RCU-barrier is a synchronization
mechanism of concurrent systems, which enables all readers
to access the new data structures, rather than the old ones, in a
shared memory. Since both new and old models point to the same
level bins and the modifications during retraining are processed
in-place in the level bins, any concurrent modification during
the model retraining is not lost.

The model retraining is triggered when the small model needs
to retrain a smaller model. For skewed workloads, FineStore
assigns the level bins in the data-intensive parts via retraining,
which flattens the data-intensive parts after several retrains. The
new data are inserted into the flattened data structure with low
data dependency. For the skewed workloads, i.e., reading and
writing data in a certain range, FineStore assigns the level bins
in the certain range via retraining, which flattens the certain data
parts after several retrains. The new data are then inserted into
the flattened data structure with low data dependency. Hence,
FineStore gradually adapts to the new data distribution along
with time.

D. Practical Operations

Search: Fig. 2(b) shows a complete searching process for
item 7 using a single thread. Stage ❶: Find the model that covers
the item 7 in the model layout. Stage ❷: Search in the prediction
range, which is calculated by the obtained model f(x). Stage ❸:
FineStore completes the search if finding the given key in the
prediction range, otherwise FineStore searches the level bins or
the small models.

Insert: FineStore searches the whole structure to identify if
the given data exists, and only the unique data are inserted into
the level bins as elaborated in Sections III-B and III-C.

Update: If a given key exists in the structure, FineStore
updates the corresponding value via atomic writes, which is
easily implemented since the value is a 64-bit pointer referring
to the real data.

Remove: As shown in Fig. 2(b), we use the tokens (i.e., 0 and
1) to indicate whether the trained data are removed. The data
in the level bins are directly removed, since changing the data
within the level bins won’t affect the model accuracy.

Range Query: FineStore processes the range query requests
via two steps. First, FineStore determines the lower and upper
boundaries like the point search. Second, FineStore obtains all
the data between the determined boundaries, without searching
the data one by one since all data are sorted during the runtime.

E. Concurrency

Concurrent data structures become important to existing sys-
tems that scale to a large number of cores and threads. The
thread collision probability of FineStore is rather low due to
the flattened data structure. We use the version control [9]
and allocate fine-grained locks to enable FineStore to support
concurrent operations.

1) Write/Write Conflicts: The write/write conflicts occur
when different threads modify the same trained data or the same
bin. FineStore allocates the per-record locks for the trained data
and the per-bin locks for the bins to enable concurrent writes.
For example, according to the principle of the modification
operations (Section III-D), FineStore first updates/removes the
matching record (i.e., whose key is equal to the given key) in the
trained data array, and the per-record lock of the corresponding
record ensures the concurrent writes. FineStore further modifies
the data in the level bins when failing to match a record in the
trained data array. The per-bin lock is used to enable concurrent
bin to be updated and split. Specifically, FineStore locks the
child bin which is determined to process the modification, while
the root bin is locked as needed (i.e., when child bin splits or the
largest data in the child bin changes).

Existing schemes use delta-buffers or preserve empty slots
to enable scalability, which however incur high overheads due
to the data dependency. For example, many locks are needed
when the tree in the delta-buffer becomes large. For the schemes
preserving empty slots, we need to lock all data covered by
the same model to enable correct data movements for resort-
ing. Unlike them, FineStore decreases the conflict probability,
since different threads that modify the level bins under different
trained data don’t block each other.

2) Read/Write Conflicts: Instead of using the locks during
reading, FineStore uses the version control [9], [28] to ensure
that the obtained data is consistent and latest. FineStore allocates
the version numbers for each trained data and bin, and increases
the version count when the data are modified. During reading, if
a record in the data structure matches the given key, FineStore
maintains the version v in the form of snapshot before obtaining
the value. The obtained value becomes valid if the version
doesn’t change (i.e., the version after reading the value becomes
equal to v) and the data is not locked. Otherwise, the latest value
is not read, since other threads are updating the value during the
data locking. FineStore repeats to read the current and next child
bins until obtaining the valid value, since the data are possibly
moved to the next child bins if the current bin is split.
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3) Write/Retrain Conflicts: FineStore avoids the
write/retrain conflicts by training the models in two granularities,
including the level-bin retraining and model retraining.
Specifically, the level-bin retraining locks the full level bins for
retraining, which ensures the data consistency due to blocking
other data modification operations. The model retraining avoids
the write/retrain collisions by sharing the level bins, i.e., the
write operations are conducted in the level bins via the old
models and these level bins are directly referenced by the new
models. Therefore, any modifications during retraining are
consistent in the new models.

4) Write/Split Conflicts: FineStore avoids the write/split
conflicts by leveraging the per-bin locks during the write phase.
Specifically, only one write thread obtains the lock of a bin and
conducts data modification operations, while other threads wait
and compete for the lock of the bin to avoid data collisions.
The read threads re-read the data to avoid the data inconsistency
when identifying that the bin is locked.

IV. SCALE TO DISTRIBUTED SYSTEMS

It becomes common to scale to multiple machines, i.e., the
distributed systems, to enjoy the large storage capability [26],
[27], [29]. We store the data on servers and access remote data
via clients using the cached index structures. Caching tree-based
structures consumes a large amount of memory due to the
multi-level inner nodes, which becomes inefficient to cache the
whole index structures [29], [30], [31]. However, caching partial
index structure fails to determine the data locations since some
inner nodes miss the local cache. The clients have to either spend
multiple network roundtrips on traversing the tree or transfer
all requests to remote servers. Both solutions become inefficient
since multiple RTTs (i.e., the roundtrips time) incur long latency,
while the scheme of transferring requests to servers increases the
computing burden of remote servers. The servers become the
system bottleneck and decreases the overall performance when
failing to efficiently process the transferred data requests, since
the tree-based structures contain heavy dependency of inner
nodes and fail to enable high concurrency.

Compared with tree-based structures, the learned indexes save
2-4 orders-of-magnitude space consumption, which become ef-
ficient to be fully cached on clients [22], [24]. For a given key, the
clients obtain the remote data via a one-sided RDMA according
to the remote data location. In this case, the data searching
requests are offloaded to clients. However, the challenges are to
enable the servers to efficiently process data modifications and
ensure the data consistency between servers and clients during
the modifications. The state-of-the-art scheme, i.e., XStore [24],
achieves significant performance improvements using the hybrid
index structures, i.e., maintaining the tree-based structure on
servers to process data modifications and caching the learned
indexes on clients for remote data searching. Such design suffers
from multiple thread collisions when processing intensive data
requests, due to the inefficient tree-based structures on servers.

Deploying existing learned indexes in the distributed system
incurs high overheads to search the data and ensure the data

Fig. 7. Scale FineStore to distributed systems.

consistency among different machines. For example, FITing-
tree [20] and XIndex [23] incur long latency to search the
remote data when the buffer becomes large, since the clients
have to spend multiple RTTs on determining the data loca-
tions. ALEX [21] and PGM-index [22] fail to concurrently
retrain models due to the heavy data dependency, as shown in
Section II-C. Although FineStore stores data in the flattened
data structure and supports concurrent retraining, the index
consistency among different machines during retraining needs
to be guaranteed. Because in a single machine, FineStore con-
currently retrains data in the background and replaces the old
models using the RCU barrier, which fails to be deployed in
the distributed systems due to the lack of RCU barrier among
multiple machines. Moreover, the performance of FineStore
decreases in the distributed systems, since the clients spend
extra RTTs on determining the data locations in the level
bins.

Fig. 7 shows the architecture of scaling FineStore to the dis-
tributed systems. To provide high performance in the distributed
systems, we enable FineStore to avoid the aforementioned chal-
lenges via two techniques, including the pipeline operations and
the extended RCU barrier.

A. Pipeline Operations

FineStore leverages the pipeline operations to access the
remote data, i.e., the clients search the trained data array and
determine the target level bin, while the servers access the
determined level bin for further operations. Such designs achieve
an efficient tradeoff between the network penalty and the com-
puting resources consumptions of servers, since the clients only
consume one RTT to search the trained data array and most
computing tasks have been offloaded from servers to clients.

Initially, the servers train models according to the data dis-
tribution and store data in the trained data array, while the
clients locally cache the whole index structures. To process
different data requests, the clients calculate the data locations
using the cached learned indexes, and obtain the predicted data
from servers via one-sided RDMA operations. The obtained
data are from trained data arrays, which are not modified dur-
ing the runtime and hence are consistent with other machines.
Moreover, the data modification requests are conducted in the
level bins. After determining the target level bin by comparing
the request data with the obtained data, clients transfer the
data requests to servers for further operations. The transferring
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request consists of [request_type, lb_addr, data], whrere the
request_type represents the type of requests, including Search,
Insert, Update, Remove, and Rang requests. lb_addr is the
address of the target level bin, and data represents the keys or
key-value pairs for various requests. The servers concurrently
lock the corresponding level bins to facilitate further data oper-
ations. According to different data requests, the server returns
the data in the address lb_addr and then modify the data in
the level bins for Insert/Update/Remove requests. The servers
deliver high concurrent performance, since the level bins are
bounded to two levels and the level bins under different trained
data have no data dependency.

The servers concurrently lock the corresponding level bins to
facilitate further data operations according to the obtained data
requests. The servers deliver high concurrent performance, since
the level bins only contain low-level arrays and the level bins
under different trained data have no data dependency.

B. Extended RCU Barrier

FineStore retrains a small model on the full level bins, and fur-
ther merges the small models using the proposed model retrain-
ing, as shown in Section III-C. To ensure the data consistency
among different machines when updating the index structures,
we extend the RCU barrier for the distributed systems.

Specifically, new models are retrained on the servers in the
background, i.e., constructing new trained data arrays in the
newly assigned space by merging the covered trained data arrays.
During retraining, FineStore processes the modifications in the
level bins. We append the pointers of the level bins under
the new trained data arrays to guarantee that the new models
correctly identify the modified data. After retraining, we cannot
remove the old models and replace them with the new ones,
since other machines concurrently access remote data using the
stale models before synchronizing new models from servers.
Instead, we update the models in two steps. First, we change
the model pointers from the old models to the new ones, and do
not remove the old models and the covered trained data arrays.
At the same time, we set a counter to record the number of
machines identifying new models. Second, we lazily remove
the stale models when all machines identify the new models
according to the counter.

In this case, no data are lost since new models identify the
data modifications via the pointers of the level bins. Different
machines contain the consistent data, since the new models share
the level bins with the old ones, which enables the machines to
cache stale models and correctly identify the new data. More-
over, the servers do not reclaim the old trained data arrays until all
machines update the index structures. The remaining old trained
data arrays consume acceptable space, since each trained data
array covers 1,400 data on average.

C. Durability

FineStore efficiently adopts existing logging-based scheme
to enable durability, since all modification operations are con-
ducted on the servers, rather than distributed systems among

servers and clients. In FineStore, different threads write the
modification operations into the log buffer, which contains key,
value and version number to avoid collisions. One logging
thread flushes the logs into the log files for persistence. For
optimization, the logger merges and batches log entries to enable
efficient durability.

V. PERFORMANCE EVALUATION

We run experiments on a Linux server (kernel version
v4.19.91) that contains one 12-core Intel(R) Xeon(R) CPU
@2.50 GHz (each core with 32 KB L1 instruction cache, 32 KB
L1 data cache and 1024 KB L2 cache) and 48 GB DRAM.
We run all schemes with 24 threads to evaluate the concurrent
performance by default.

Counterparts for Comparisons: We compared our proposed
FineStore with state-of-the-art schemes. For the tree-based
structures, we compare FineStore with Masstree [9], which is
a variant of scalable concurrent B+-tree. Due to different design
goals, Bε-tree [32] is not compared since it is optimized for
less disks I/Os, rather than the memory access in our scheme.
Moreover, for the learned index schemes, we enable RMI [15] to
support scalability by adding a delta-buffer (denoted as LI+Δ),
where the buffer is implemented as a Masstree [9]. We com-
pare FineStore with XIndex [23] and LI+Δ [15], where their
difference is that LI+Δ fails to support concurrent retraining.
FITing-tree is not compared due to failing to support concurrent
operations, e.g., concurrent writing and retraining. We run the
codes of ALEX and PGM-index with a single thread, but do
not run them with multiple threads due to the thread collisions
that come from their slot contentions [21], [22]. The core dump
occurs when there are insufficient empty slots, since different
threads construct multiple trained data arrays, respectively re-
distribute data and retrain new models, which incur severe data
inconsistency issues.

Configurations: For the compared counterparts, we directly
run their source codes with the default configurations. We im-
plement a 2-stage RMI following the original work [15], and
the second stage configures 250 K models like the setting in
XIndex [23] to facilitate fair comparisons. In FineStore, we
use the predefined threshold 32 (which is a suitable trade-off to
obtain high prediction accuracy and small number of models),
to train the models. The root and child bins respectively contain
8 and 16 keys to obtain a suitable tradeoff between the insertion
capacity and search efficiency. By default, we did not enable
durability for all schemes in our evaluations to achieve efficient
index performance and facilitate fair comparisons.

Benchmarks: (1) YCSB, a benchmark with six different work-
loads (A-F), including update heavy (A), read mostly (B), read
only (C), read latest (D), short ranges (E) and read-modify-write
(F). All workloads contain 100 million data with both Uniform
and Zipfian distributions. (2) Weblogs contains 127 million
unique log entries and we use the timestamps as the indexes. (3)
DocId contains five text collections in the form of bags-of-words,
which has nearly 10 million instances in total. We also use 2
synthetic datasets with 200 million items to evaluate the behavior
of FineStore in depth: (4) Normal distribution with μ = 4 and
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Fig. 8. Throughputs on YCSB with various workloads.

σ = 2, and (5) Lognormal distribution with μ = 0 and σ =
2. All generated keys are scaled up to [0, 1012] as integers for
evaluations. The CDFs of the used benchmarks are shown in
Fig. 1(b). We configure all benchmarks with 8-byte keys and
value-pointers (i.e., the pointers refer to the variable-length val-
ues), since existing systems support up to 8-byte computations
for ML models [15], [23].

A. The Throughput via YCSB

Fig. 8 shows the throughput of different schemes on YCSB
with Uniform and Zipfian distributions. In general, FineStore
significantly improves the throughput on dynamic workloads
over other schemes, as well as achieving higher throughput on
static workloads due to the optimized model layout and high
model accuracy.

Static Workloads (YCSB A, B, C, F): The data distributions
of the static workloads won’t change during runtime, since
most requests are reading (e.g., workload C) or updating the
values (e.g., workloads A, B, and F). In these cases, FineStore
achieves comparable (even a little better) throughput than LI+Δ
and XIndex, since FineStore searches fewer models in the op-
timized layout and efficiently finds the data with higher model
accuracy.

Dynamic Workloads (YCSB D, E): FineStore delivers
higher throughput than other schemes on the dynamic work-
loads. Specifically, FineStore outperforms LI+Δ, XIndex, and
Masstree by 1.7×, 1.6×, and 2.3× on workload D. Because
FineStore incurs few data movements and has low-probability
thread collisions during insertion, while LI+Δ, XIndex, and
Masstree incur high overheads to traverse the trees. Moreover,
FineStore further improves the throughput by up to 3.2×, 2.7×,
and 2.1× over LI+Δ, XIndex, and Masstree on workload E.
The main reason is that LI+Δ and XIndex handle new inserts
in the delta-buffer, which has data overlapping with the original
trained data array and fails to keep all data sorted.

B. The Throughput With Heavy Writes

We evaluate the scalability throughput under heavy writes.
In the experiments, we randomly sample a fraction of data to

train the learned structures, and the data distribution does not
change during insertion. We also insert these sampled data into
Masstree for fair comparisons.

The Number of Threads: Fig. 9(a) shows the insert throughput
with different threads. We observe that FineStore improves the
insert throughput by up to 1.6×, 1.3×, and 2.0× over LI+Δ,
XIndex, and Masstree when the number of threads increases.
FineStore obtains more performance improvements with more
threads, since FineStore reduces the thread collisions by insert-
ing the data into the flattened level bins.

The Number of the Inserted Data: The number of the inserted
data to the trained data is defined as Insert Factor, which clearly
differentiates the inserted data from the trained data for the
learned structures. Fig. 9(b) shows the throughput of inserting
different numbers of data. We observe that the insert throughput
of FineStore is low at the beginning due to consuming time on
allocating the level bins for each trained data. When inserting
more data, FineStore improves the throughput by up to 1.5×,
1.2×, and 1.3× over LI+Δ, XIndex, and Masstree. The main
reason is that the level bins incur few data movements during
insertion and handle inserts up to nearly (m ∗ n) times (m and
n represent the slot numbers of root and child bins) more than
the trained data without retraining. However, the delta-buffer
in LI+Δ and XIndex incurs high overheads to iteratively split
the nodes with massive data movements. The data dependency
among nodes further hinders the concurrent performance during
insertion.

Insertion With Frequent Retraining: Fig. 9(c) shows the
throughput timeline when inserting more than 1000× data than
the trained data. In this case, the learned models are frequently
retrained to learn the new data distribution for high accuracy.
We observe that FineStore improves the insert throughput by
about 1.8× over other schemes. Because FineStore concurrently
adapts to the new distribution by efficiently executing the level-
bin retraining and model retraining.

C. Throughput With Read-Write Workloads

The Search Performance After Inserts: The learned structures
offer high search performance on the static workloads, which are
important even after inserting a large number of data. Fig. 9(d)
shows the search throughput after inserting different numbers
of data. We observe that LI+Δ and XIndex decrease the search
performance after heavy writes, since they have to spend extra
time on searching the delta-buffers. The performance further
decreases when the buffer becomes large. The performance of
FineStore also decreases after inserts, since the size of the level
bins increases when we constantly insert data. However, Fine-
Store provides higher search performance than other schemes,
since we bound the level-bins to two levels via retraining. We
have the similar observations and insights on other benchmarks,
as shown in Fig. 10.

Different Read/Write Ratios: Fig. 13 shows the throughput
with various read/write ratios. We have the similar observations
with previous evaluation results, i.e., FineStore delivers high
performance on both static and write-intensive workloads.
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Fig. 9. Scalability throughput in various scenarios, which are evaluated on the lognormal dataset.

Fig. 10. Throughputs on various workloads.

Fig. 11. Throughputs on skewed workloads.

D. Throughput With Skewed Workloads

The data distribution may change, e.g., reading/writing data in
a certain range, rather than accessing the data evenly following
the trained pattern. The accessed range divided by the range
of trained data is defined as Hotspot Ratio, where the smaller
hotspot ratio represents the larger skewness. Fig. 11 shows
the insert and search throughputs on the skew workloads. We
observe that both FineStore and XIndex show low performance
when the skewness is large, since more thread collisions occur
and more retrainings are necessary. As the skewness decreases,
FineStore achieves higher performance than other schemes,
due to retraining the data-intensive part and assigning a large
amount of level bins. After several retrainings, FineStore flattens
the skewed data and adjusts to the new data distribution, thus
decreasing the thread collisions.

E. In-Depth Analysis for FineStore

To examine where the performance improvements come, we
leverage Control Variates [33] to evaluate different components
of FineStore, and the results are shown in Fig. 12. In general, the
most benefits come from the flattened data part and concurrent
retraining.

Model Part: Fig. 12(a) shows the performance of the model
part. In this experiment, all data are stored in the trained data
array and we won’t insert any data. We observe that FineStore
doesn’t obtain significant performance improvements, com-
pared with other learned schemes, since the models of all learned
structures keep high accuracy when there are no inserts.

Data Part: Fig. 12(b)–(d) show the performance of the data
part. In these experiments, we only use one model to mitigate the
influence from the model layout. From Fig. 12(b), we observe
that the level bins improve the insertion performance by about
1.8× than the delta-buffer with a single thread, and further
improves about 2× with more threads. The reason is that the
non-shared level bins have low data dependency among each
other and incur few thread collisions in concurrent systems.
After a large number of inserts, the level bins respectively
improve about 2.1× and 3.2× point/range query performance
than the delta-buffer, as shown in Fig. 12(c) and (d), since the
level bins keep all data sorted.

Retraining Frequency: Fig. 12(e) shows the retraining fre-
quency when new data are constantly inserted. We observe that
the scheme with a delta-buffer incurs more retrainings than
FineStore, since the delta-buffer is shared by all data covered
by one model and becomes large during the insertions. Unlike
it, FineStore adjusts to the new data distribution after several
retrainings and requires less retrainings later. Because FineStore
amortizes the insertions into multiple small-sized level bins and
processes more inserts with high performance.

F. Overheads Analysis

1) Training Latency: Fig. 14 shows the latency to train differ-
ent structures, and the latency to train Masstree is evaluated by
inserting the trained data into the tree. We observe that FineStore
incurs low latency to train the model, which outperforms LI+Δ
and XIndex by up to 1.3× and 8.9×. Specifically, the LPA
algorithm [34] greedily trains data and obtains fewer models
than other schemes during training. However, the RMI scheme
needs to traverse all data multiple times due to the level-by-level
training strategy [15]. The complexity to train XIndex is higher
than RMI, depending on the data distributions, since XIndex
needs to train RMI multiple times to improve the accuracy.

To dynamically adapt to the new data distribution, FineStore
performs retraining in two granularities, including level-bin re-
training and model retraining. The level-bin retraining consumes
27 μs to train the full level bins in our experiments. Although
model retraining consumes more time (e.g., 1.5 ms on 10 K data),
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Fig. 12. Performance analysis. DB represents the delta-buffer, and LB represents the level bins. The number # in DB −#/LB −# represents the used threads.
The 1/0 in figure (e) represents that the retraining is/isn’t required.

Fig. 13. Throughput with various read/write ratios.

Fig. 14. Training latency on various workloads.

the latency doesn’t affect other concurrent operations, since we
perform the model retraining in background.

2) Memory Overheads: Fig. 15 shows the memory usage of
FineStore on various workloads. In general, the memory usage
of FineStore consists of three parts, including the trained models,
the trained data array and level bins. Among them, the trained
models occupy about 2% of the total memory consumption,
e.g., consuming no more than 10 MB space to store models
when training 2 ∗ 108 lognormal data. The trained data arrays
contain all the trained data, while the level bins store the new
data, and these two kinds of structures are the main memory
consumptions. In the distributed environment, the servers re-
quire a large amount of memory to store the models and data,
while the clients only need to cache the learned models to save
space. Hence, the clients have the capability to cache the full
learned indexes. Moreover, although the level bins contain empty
slots, FineStore allocates one bin as needed during the runtime,
and fully leverages existing allocated bins to achieve high space
utilization.

In the distributed systems, the clients locally cache the meta-
data, which are evaluated in Fig. 16, including the sizes of ML
models in the learned structures and the memory consumptions
of inner nodes in the tree-based schemes. From the results, we
observe that all learned structures consume less memory than
tree-based schemes by up to two orders-of-magnitude, since one

Fig. 15. Memory consumptions of FineStore.

Fig. 16. Memory overhead of models/inner nodes.

linear regression model is enough to index the same linearly
distributed data while the trees need to construct multi-level
inner nodes.

G. Performance in Distributed Systems

We deploy FineStore on a cluster with 4 machines to evaluate
the performance in the distributed systems, including 1 server
and 3 clients. Each machine is equipped with two 26-core
Intel(R) Gold 6320R CPUs @2.10Ghz, 128 GB DRAM, and
one 100 Gb Mellanox ConnectX-5 IB RNIC.

We compare FineStore with 3 state-of-the-art distributed
ordered KV stores, including EMT [26] (i.e., the distributed
Masstree using RDMA), Cell [30], and XStore [24]. Among
them, EMT maintains a Masstree on the servers, and relies on the
servers to process all requests by transferring requests to servers.
Cell caches partial inner nodes of B-tree on clients to speed
up the index operations, which however has to spend multiple
RTTs on traversing the B-tree due to not caching the whole
structure. XStore leverages the hybrid index structures to process
the index operations, which caches the learned indexes on clients
to access the remote data while leveraging the B-tree on servers
to process the modifications. Unlike them, FineStore achieves
high scalability by deploying a concurrent learned index scheme
on both servers and clients.
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Fig. 17. Throughputs on YCSB in distributed systems.

Fig. 18. Hybrid read/write throughput.

Fig. 17 shows the performance of different schemes in dis-
tributed systems using various YCSB workloads.

Read-Only Workloads (YCSB C): FineStore delivers compet-
itive performance with XStore and achieves higher read perfor-
mance than other schemes by up to 2.4x, due to enabling the
efficient one-sided RDMA read operations. Unlike it, Cell has
to spend multiple network roundtrips on reading remote data,
while EMT has to transfer the requests to the remote server and
wait for the returned results.

Read-Write Workloads (YCSB A, B, D, E, F): FineStore
achieves higher write performance than other schemes by up
to 1.7x on the read-write workloads. The main reason is that
FineStore efficiently processes different index operations via
the pipeline operations, which alleviates the computing burden
of servers by offloading the computing tasks to the clients.

Performance of Using Hybrid Read-Write Workloads: Fig. 18
shows the throughput with various read/write ratios. In general,
FineStore respectively improves the performance by 1.5×, 2.2×,
and 1.3× over EMT, Cell, and XStore when configuring large
write ratios, since FineStore incurs fewer thread collisions via
the flattened data structure. The performance of EMT is limited
by the Masstree due to transferring all data requests to servers,
while the Masstree delivers low performance due to the depen-
dency among inner nodes. Cell and XStore efficiently leverage
the cached index structures to access the remote data, which
however decrease the performance with large write ratios, due
to transferring requests to servers and relying on the tree-based
structures to process data modifications.

Performance With Intensive Writes: Fig. 19 shows the
throughput under intensive writes. In our evaluations, we
constantly insert different numbers of data, and observe that

Fig. 19. Write-intensive throughput.

Fig. 20. Benefits of the extended RCU barrier.

FineStore improves the insert performance by up to 1.9×,
2.7×, and 1.4× than EMT, Cell, and XStore. The main reason
is that FineStore efficiently process the data modifications via
the concurrent learned index scheme, while other schemes rely
on the inefficient tree-based structures to process various data
requests. Moreover, FineStore incurs low latency since the
flattened data structure enables high concurrent operations with
few thread collisions.

The proposed extended RCU barrier is used to guarantee
the consistency among different machines when concurrently
retraining models. With the extended RCU barrier, different ma-
chines concurrently access remote data with the cached learned
indexes, as well as updating the cached models when identifying
new models. Without the extended RCU barrier, FineStore has
to adopt the lock-based schemes to ensure the data consistency
when updating the retrained models. Fig. 20 shows the results of
using the extended RCU barrier and the remote locks. From the
results, we observe that the extended RCU barrier significantly
improves the system performance when inserting a large number
of data, due to not blocking the systems when updating the
models.

To show the benefits of the proposed pipeline operations,
Fig. 21 shows the performance of different schemes to con-
duct index operations on the lognormal dataset, including the
schemes that purely conduct all operations on clients and transfer
data requests to servers. From the results, we observe that com-
pared with the purely on-client scheme, the pipeline operations
reduce the network roundtrip penalty due to transferring the
data requests to the servers. Specifically, the purely on-client
schemes require multiple network roundtrips to determine the
data locations, and require multiple network roundtrips to guar-
antee the data consistency among different machines. Compared
with the purely on-server scheme, the pipeline operations alle-
viate the computing bottleneck on the servers due to offloading
some computing tasks onto the clients. Specifically, the purely
on-server scheme transfers all operations to the servers and waits
for the replies of the server. Unlike them, the pipeline operations
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Fig. 21. Benefit analysis for the proposed FineStore.

conduct the prediction operation on the clients, while the server
only need to conduct further operations in the predicted range.

VI. RELATED WORK

The Learned Structures for Memory Systems: The learned in-
dex [15] leverages the powerful calculations to replace the tradi-
tional expensive memory consumption. To support the insertion
operation, ALEX [21] reserves the slots for new inserts and syn-
chronously allocates a new data array when there are no enough
slots. PGM-index [22] obtains the temporal and spatial trade-off
via an optimal number of linear models. FITing-tree [20] uses
B+-tree as a buffer to process the inserts. XIndex [23] uses
the concurrent Masstree [9] as the delta-buffer and concurrently
compacts the buffer with the trained model at runtime. Unlike
them, RadixSpline [35] builds the index structure fast, as well
as showing efficient lookup performance. SOSD [36], [37] and
CDFShop [38] show the advantages of learned structures over
tree-based structures. Instead of using the workload-driven ap-
proach, DeepDB [39] proposes a new data-driven approach for
learned DBMS. In the KV systems, BOURBON [40] coalesces
the learned index with the LSM-based key-value store to deliver
high performance. XSTORE [24] leverages the learned index to
improve the performance of network-attached in-memory key-
value store. Moreover, Tsunami [41] achieves efficient search
performance by using learned multi-dimensional indexes, while
LISA [42] learns the spatial data.

Tree-Based Structures for Memory Systems: Traditional tree-
based structures have been implemented with the support of
hardware, including cache, SIMD and GPUs [6], [7], [7], [43],
[44]. B ε-tree [32] improves write performance via asynchronous
writes to disks with less I/Os. Masstree [9] uses fine-grained
locks to provide concurrent operations. Wormhole [45] replaces
the inner nodes of B+-tree with a hash-table encoded Trie to
process the variable lengths of keys. μ Tree [46] shows low tail
latency than other tree-based schemes on persistent memory.
Several schemes focus on compressing indexes to reduce the
sizes of keys via prefix/suffix truncation, dictionary compression
and key normalization [47], [48].

VII. CONCLUSION

In this article, we propose a fine-grained learned index scheme
for concurrent and distributed systems, called FineStore. To
achieve the scalability, the inserts are processed in the level
bins under each trained data. Moreover, FineStore concurrently
adapts to the new data distribution with non-blocking retraining,

as well as ensuring the data consistency. Our experimental results
show that FineStore respectively improves the performance by
up to 1.8× and 2.5× over the learned-based and tree-based
structures. We have released the source codes for public use
in GitHub.
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