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Abstract— With the rapid growth of application migration,
the anonymity in data center networks becomes important in
breaking attack chains and guaranteeing user privacy. How-
ever, existing anonymity systems are designed for the Internet
environment, which suffer from high computational and net-
work resource consumption and deliver low performance, thus
failing to be directly deployed in data centers. In order to
address this problem, this paper proposes an efficient and easily
deployed anonymity scheme for software defined networking-
based data centers, called mimic channel (MIC). The main
idea behind MIC is to conceal the communication participants
by modifying the source/destination addresses, such as media
access control (MAC) and Internet protocol (IP) address at
switch nodes, so as to achieve anonymity. Compared with the
traditional overlay-based approaches, our in-network scheme
has shorter transmission paths and less intermediate opera-
tions, thus achieving higher performance with less overhead.
We also propose a collision avoidance mechanism to ensure the
correctness of routing, and three mechanisms to enhance the
traffic-analysis resistance. To enhance the practicality, we further
propose solutions to enable MIC co-existing with some MIC-
incompatible systems, such as packet analysis systems, intrusion
detection systems, and firewall systems. Our security analysis
demonstrates that MIC ensures unlinkability and improves
traffic-analysis resistance. Our experiments show that MIC has
extremely low overhead compared with the base-line transmission
control protocol (TCP) (or secure sockets layer (SSL)), e.g., less
than 1% overhead in terms of throughput. Experiments on
MIC-based distributed file system show the applicability and
efficiency of MIC.
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I. INTRODUCTION

W ITH the expansion of the scale, data centers are facing
a growing number of security threats from internal

components (such as compromised servers, switches). Accord-
ing to IBM 2015 Cyber Security Intelligence Index [2], 55%
of all attacks and incidents monitored by IBM in 2014 were
carried out by insiders. Moreover, the outside attackers can
always hack into the internal network of their targets for data
breach. For example, in the data breach of Target in 2013,
the attackers gain access to the Target network through stolen
HVAC vendor credentials [3], and then steal 40 million credit
cards. As we can see, the internal network is untrustful, and
more attentions should be placed on the security inside data
centers.

When travelling through the untrustful network, it is impor-
tant to protect the communication participants’ identities and
traffic patterns to conceal the activities of users. Even if the
messages are encrypted, an adversary can still launch traffic-
analysis attacks by examining the unencrypted information,
like IP addresses, port, traffic rate or size. For example,
an attacker can identify the originator and terminater of a
flow by checking the source and destination addresses, and
then reveal (or guess with a high probability) the ongoing
operations between them by analyzing the traffic patterns.
Further, the attacker can even know which user and appli-
cation the communication participants belong to, as well as
the scale or load of the application, through iterated traffic-
analysis attacks. If the attacker aims to crash the target
application or system, he can locate some key nodes of the
system (like the Metadata Servers in distributed file systems)
easily, and then launch active attacks, such as DoS/DDoS and
Worms. If he aims for data breach, this can help locate the
target servers.

A lot of anonymity systems have been proposed to conceal
user identity and resist traffic-analysis attacks. Such systems
attempt to facilitate anonymous communication by building
mix- or relay-based overlay network, such as Mixminion [4],
Crowds [5], Tor [6], Dissent [7], and etc. However, these
systems are designed for the Internet environment, suffering
from high overhead, and cannot meet the requirements of high
bandwidth and low latency in the data center environment.
For example, the most popular anonymity system Tor uses
layer-encrypted packets and travels through multiple indirect

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



3768 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

relays to conceal the endpoint’s IP address. This approach
will result in significant performance loss, since long end-
to-end path length and cryptographic operations will cause
high latency. Meanwhile, the indirectly traveling will incur
redundant network traffic, consuming considerable network
resources and reducing the total capacity of the data center
network.

Most of the applications in data centers are performance
sensitive, which require high bandwidth (e.g. video encod-
ing systems) and low latency (e.g. web search systems)
in transmission. Moreover, the computational and network
resources are limited, and the overlay-based approaches are
too expensive and will significantly reduce the capacity of the
data center. Measurements show that Tor reaches 62 times
higher in latency and 80% lower in throughput compared
to the baseline TCP (Fig. 9 and Fig. 10(a)). Therefore,
it is a challenge to provide an efficient and low overhead
anonymity system which is suitable for the data center
environment.

The widely deployed Software Defined Network-
ing (SDN) [8] in data centers brings new idea for achieving
anonymous communication. The SDN architecture makes
the packets forwarding more flexible. The controller can
install routing rules into switches in advance and the switches
modify the packet header to hide the real participants of a
flow, achieving anonymous communication.

To meet the requirements of anonymity within data centers,
we present Mimic Channel (MIC), an efficient in-network
anonymity system designed for data center environment, which
can significantly reduce computation and network resource
consumption with non-overlay architecture. The basic idea
behind MIC is to conceal the sender and receiver of a flow
by changing the addresses (such as MAC, IP and port) on
multiple switches (not hosts). As a result, a flow can mimic
flows of other participants. A flow in MIC is called an
m-flow. The switch node which changes the packet addresses
is called Mimic Node (MN). The fake addresses changed by
an MN are called m-addresses. An MN can be regarded as
a lightweight mix (or relay) node in traditional anonymity
systems, but is built on a switch node in the network.
MIC achieves in-network anonymous communication, and
hence has much shorter forwarding paths and fewer inter-
mediate operations than traditional overlay-based schemes.
Therefore, MIC is more efficient and suitable for data center
environments.

However, there are two technical challenges in the MIC
design. First, in order to achieve better anonymity, the
m-addresses should be real addresses in the same network.
Therefore, we need to handle the potential conflicts between
two different m-flows or between an m-flow and a common
flow (non-mimic flow). To avoid these routing collisions,
we propose a Collision Avoidance Mechanism and design
an M-Address Generation Algorithm (MAGA) to map the
m-addresses of different m-flows to disjoint address spaces.
Second, in order to increase the usability and deployability,
the MIC design should not incur any modification on commod-
ity SDN switches, as well as achieving a certain level of traffic-
analysis resistance. We employ Multiple M-flows, Dynamic

M-Flows and Partial Multicast mechanisms to improve the
traffic-analysis resistance of MIC.

The paper makes the following contributions.
• We reveal the potential security threats in non-anonymous

data centers, and emphasize the importance of anonymous
communication inside data centers.

• We propose an efficient anonymity scheme for
SDN-based data centers, called MIC, which hides
the communication participants by changing the
packet header at multiple switch nodes along the
transmission path. To address the challenge of routing
collision, we design a Collision Avoidance Mechanism
(Sec IV-B3). We also propose three mechanisms
to enhance the traffic-analysis resistance for MIC
(Sec IV-C) and present solutions to enable MIC
co-existing with other systems like intrusion detection
systems (Sec VI-A).

• We implement and evaluate MIC. Our security analy-
sis and evaluations demonstrate that MIC can achieve
session unlinkability and improve traffic-analysis resis-
tance at low overhead. We also propose and implement
MIC-based distributed file system (CapFS) to verify
the applicability of MIC. The evaluation on MIC-based
CapFS demonstrates that MIC can be easily deployed in
distributed systems inside SDN-based data centers with
negligible overhead.

The rest of this paper is organized as follow. Section II
presents the background and motivation of this paper.
Section III describes the system model, threat model, goals
and assumptions. Sections IV describes the MIC design.
In Section V, we discuss the security of MIC. We dis-
cuss the deployment and applicability issues of MIC in
Section VI. Section VII describes the implementation details
and our experimental evaluation of MIC. Section VIII
describes the related work. Finally, we conclude our paper
in Section IX.

II. BACKGROUND AND MOTIVATION

Anonymity in Data Centers: The anonymity in data center
is very important in breaking attack chains and guaranteeing
user privacy. We take the data breach of Target in 2013 as
an example to show how anonymity in the internal network
helps to alleviate the attack. The attack is performed by the
following steps [3].

Step 1: Install Malware that Steals Credentials
Step 2: Connect Using Stolen Credentials
Step 3: Exploit a Web Application Vulnerability
Step 4: Search Relevant Targets for Propagation
Step 5: Steal Access Token from Domain Admins
Step 6: Create a New Domain Admin Account Using the

Stolen Token
Step 7: Propagate to Relevant Computers Using the New

Admin Credentials
Step 7.1: Bypassing Firewall and Other Network-based

Security Solutions
Step 7.2: Running Remote Processes on Various Machines

Step 8: Steal 70M PII. Do Not Find Credit Cards
Step 9: Install Malware. Steal 40M Credit Cards
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Step 10: Send Stolen Data via Network Share
Step 11: Send Stolen Data via FTP
In the Step 4, the attackers locate the relevant target servers

by querying Active Directory1 and obtain the respective IP
addresses by querying the DNS server. In the Step 7.1,
the attackers bypass the firewall and other network-based
security solutions by propagating through a series of servers
using the “Angry IP Scanner”2 and “Port Forwarding utility”,3

which are based on IP addresses. In this attack, a precursory
step for enabling the attackers accessing their target servers
which hold credit cards is to obtain the IP addresses of the
relevant servers. If anonymity is enabled, the attackers cannot
obtain the IP addresses of the relevant servers directly, and
it is hard for the attackers to bypass the firewall and other
network-based security solutions as they has no idea of their
targets’ identifies. Therefore, anonymity in data centers can
help to alleviate the attack dramatically.

The data center faces internal security threats. An adversary
can collect or observe a large number of traffic information
at any point of the network easily. For example, a hacker
can take over a switch by telnet attack, thereby observing
and analyzing the traffic patterns to launch traffic-analysis
attacks. In some server-centric network topologies, such as
BCube [9], a hacker can compromise a server, and analyze
the traffic passing through it. In virtualized cloud data centers,
a malicious user on a guest VM can attack or compromise
the host hypervisor by “guest VM escape” [10], and then
can easily observe the traffic of other VMs on the same
host. Much information in the packet header is useful to the
adversaries, for instance, the ‘ports’ will typically reveal the
service type (the port 80 represents Web server). In addition,
there are many known shortages in existing commercial cloud.
For example, Ristenpart et al. [11] point out that the internal IP
addresses are statically assigned to physical machines, and one
can use the internal IP address to infer the instance type and
availability zone of a target service in EC2 [12]. Therefore,
it is important to protect the identity of a host inside data
centers.

Unfortunately, traditional anonymity systems are designed
for the Internet environment, which are not suitable for the data
center environment. First, the applications in data centers have
higher performance requirements than those in the Internet.
All existing anonymity approaches are overlay-based, and
hide the correspondence between input and output messages
through hop-by-hop encryption. Therefore, they suffer from
high performance overhead due to long transmission path
and cryptographic operations. Second, the computational and
networking resources are expensive in data centers. Redun-
dant traffic in overlay architecture and multiple cryptographic
operations will consume a lot of resources. Therefore, it is
a challenge to achieve anonymous communication at low
overhead. Fortunately, the data center is more controllable
than the Internet, and it naturally faces much less security
threats than the Internet, while tolerating looser threat model.

1https://en.wikipedia.org/wiki/Active_Directory
2http://angryip.org
3https://portforward.com

Fig. 1. The system model of MIC. The main idea behind MIC is to
conceal the communication participants by modifying the source/destination
addresses (such as MAC, IP and port) at multiple switch nodes (MNs).

This gives us a new design space for a lightweight anonymity
system.

Software-Defined Networks: The Software-Defined
Networking (SDN) architecture separates data plane from
control plane, simplifying the network configuration,
opening up the networking, and making the networking
programmable. SDN dramatically simplifies the routing
in data center networks (DCNs). A lot of researches on
SDN-based DCNs, such as MCTCP [13], Hedera [14] and
zUpdate [15], have demonstrated the feasibility and trend of
integrating SDN into the data center. In this paper, we focus
on the anonymity scheme in SDN-based data centers.

III. PROBLEM DEFINITION

In this paper, we study the anonymity system for data cen-
ters to achieve anonymous communication and enhance traffic-
analysis resistance. More specifically, an anonymity system
should conceal the end-hosts’ identities and the real traffic
patterns. Taking into account the features of data centers,
we study an anonymity system that can provide a practical
level of anonymity at minimal performance overhead.

A. System Model

The scheme proposed in this paper is designed for SDN-
based data centers, and all the switches in this paper are
SDN-enabled, which can modify the packet header. Mimic
Channel (MIC) is a typical C/S model design, which con-
sists of clients, MNs (Mimic Nodes) and an MC (Mimic
Controller). As shown in Fig. 1, Alice is an initiator client
who wants to communicate with Bob (the responder client)
anonymously. She creates a transport channel between Bob
and communicates with each other using MIC. A mimic
channel consists of one or several end-to-end flows, called
m-flows. Each m-flow travels through several MNs, which are
specified by the MC. The MC, located in the SDN controller,
calculates and manages the routing of each m-flow.

• The clients, including the initiators and the responders,
can be any end-hosts in the network. An initiator estab-
lishes a mimic channel with a responder proactively
before communication starts. Once a mimic channel is
established, the communication pairs can exchange mes-
sages without revealing each other’s identity.
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• An MN is a lightweight mix or relay in the traditional
anonymous systems, which can only modify the header of
packets instead of operations like encryption/decryption,
re-ordering, delaying and batching, and etc. The com-
mercial switches generally have no advance intelligence,
and our design goal is to minimize the overhead. Any
switches in the network are potential MNs.

• The MC is responsible for calculating and managing the
routing of each m-flow. It determines the MNs in each
m-flow, and generates m-addresses for each MN. With
the global view of the network and each m-flow, the MC
is the core of MIC design.

At a high level, MIC has two phases, the channel
establishment (Section IV-A1) and the data forwarding
(Section IV-A2).

B. Threat Model

The goal of adversaries is to break the unlinkability of
communication pairs, seeking to infer which pairs of clients
are communicating. We assume an adversary who can com-
promise a part of switches, the initiator client or the responder
client; and who can observe some fraction of network traffic.

Compromising the Switches: An adversary may compro-
mise one or a plurality of switches (but not all), which may
be MNs or common switches, seeking to observe and correlate
the traffic via the switches.

Compromising the Client: An adversary may compromise
the initiator (or the responder), seeking to obtain the identity
of the responder (or the initiator). For example, a hacker
compromises a client in a distributed storage system, and
attempts to obtain information of other nodes (like the meta-
data servers or storage servers), to learn which points in the
network to attack next.

Observing the Traffic: An adversary may observe and
analyze the traffic at some points in the network. For example,
the switches in data centers generally have port mirroring
function, which is used for Intrusion Detection System (IDS).
The adversary may use the port mirroring for traffic observ-
ing, or have compromised the existing IDS.

Like most of the prior practical anonymity schemes, MIC
does not protect against a global adversary who can snoop
on all paths or switches. A global adversary is unlikely in
practice. Specifically, it is not easy to compromise a single
switch, let alone all the switches in data centers. Moreover,
an IDS generally monitors the traffic from only a few ports to
reduce the overhead, and the port mirroring on most switches
are disabled by default. Therefore, it is hard to observe the
global traffic from all switches.

C. Goals

The main goal of MIC is to frustrate attackers from linking
communication partners, achieving session unlinkability. MIC
also aims to enhance resistance against size- or rate-based
traffic-analysis. Moreover, MIC has the following design
goals:

High Performance: Most of the applications in data cen-
ters are performance sensitive, requiring high bandwidth and

low latency. For example, the web services are delay sensi-
tive applications and the file services are bandwidth hungry
applications.

Deployability: MIC design should require no kernel
or switch modifications, and can deploy in common
SDN-based data centers.

D. Assumptions

We assume the SDN controller (i.e., the MC), is secure,
and all the communications between the SDN controller and
the switches are secure. We believe these assumptions are
reasonable. The SDN controller is the core of the network.
Once the controller is compromised, the entire network will
crash.

IV. DESIGN OF MIC

A. Overview

Similar to most of the previous anonymity systems, MIC
has two phases, including the channel establishment and data
forwarding.

1) Channel Establishment: In channel establishment,
one or a set of bi-directional routing paths will be generated
for each channel. Each m-flow has independent MNs and
m-addresses. Specifically, when establishing a mimic channel,
the initiator creates a request packet to the MC, and then
the MC generates the corresponding routing before returning
an acknowledgement to the initiator. The request packet con-
tains the encrypted m-flow number, MN number and server
address (or nickname). The MC calculates the forwarding
path for each m-flow and chooses the specified number of
switches as the MNs in each path. After all paths are generated,
the MC sends an acknowledgement, which contains a set of
entry addresses, to the initiator. The entry address is the first
m-address in an m-flow from the initiator’s view, which hides
the address of the responder. In practice, the communication
between the initiator and the MC can be realized by using the
“packet in” mechanism, and a few UDP packets is enough.

2) Data Forwarding: After the mimic channel is estab-
lished, the initiator or the responder can send messages
anonymously through the channel. All the MNs will mimic
the header of packets traveling through the path to hide the
participants’ identities. After the communication is completed,
the sender will send a notification to the MC to facilitate
channel management at the MC.

We take a simple example to illustrate how MIC works.
Suppose two clients Alice (with IP address 10.0.0.1) and
Bob (with IP address 10.0.0.8) are connected via three
switches (S1, S2 and S3), as shown in Fig. 2. For the purpose
of anonymous communication, Alice dose not send messages
to Bob directly, but sends a request to the MC for constructing
an anonymous path to Alice first. After receiving the request
from Alice, the MC calculates the forwarding path to Bob.
The switches along the path modify the packet header to
conceal the identities of Alice and Bob. Specifically, suppose
the packet header is denoted as a two-tuple 〈src_ip, dst_ip〉.
The MC notifies Alice that he should send packets to the des-
tination with address 10.0.0.2, i.e., the packet header of P1 is
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Fig. 2. An example of MIC. The intermediate switch nodes are not aware
of the real ‘src’ 10.0.0.1 and ‘dst’ 10.0.0.8.

〈10.0.0.1, 10.0.0.2〉. The switch S1 modifies the header of P1,
and forwards it to the next hop, i.e., the packet header of P2 is
〈10.0.0.3, 10.0.0.4〉. Similarly, switches S2 and S3 modify the
packet header to 〈10.0.0.5, 10.0.0.6〉 and 〈10.0.0.7, 10.0.0.8〉,
respectively. It is worth noting that the last switch should
modify the destination address back to the correct one, so that
the receiver can handle the packets correctly without protocol
stack or kernel modification.

B. Mimic Controller

The MC, located in the SDN controller, is the core of
MIC. All the routings are calculated by the MC, and then are
installed to the corresponding switches. The MC decides the
forwarding path, the MNs and m-addresses for each m-flow,
and has the global view of each channel. Specifically, the MC
manages all the channel states, calculates and manages the
routing, and handles the routing conflicts of each m-flow,
ensuring the correctness of the network.

1) Channel Management: The MC needs to maintain the
status of all mimic channels. When a mimic channel is
constructing or the communication is finished, the initia-
tor sends a request to inform the MC. Therefore, the MC
can have the states of all m-flows. Thus, it can be seen
that the MC needs to handle a large number of establish-
ing and shutdown requests in massive short communica-
tion scenes. In order to reduce the overhead on the MC,
we should reuse the mimic channel among the communi-
cations between the same participants. Therefore, in these
scenarios, the sender does not send shutdown request to the
MC immediately when the communication is finished. Instead,
a dedicated module in the initiator will send notification to the
MC periodically.

2) Routing Calculation: MIC achieves anonymous commu-
nication by elaborately-designed routing which changes the
packet header at several switches while finally leading to
the right destination. The MC obtains the global view of
the network and calculates all-pairs equal-cost shortest paths
after initialization. After receiving the request packet from an
initiator, the MC generates the specified number of routing
paths for m-flows. First of all, the MC gets the initiator and
the responder’s addresses, the m-flow number F and the MN
number N from the request packet. If the responder is a hidden
receiver, the MC should find the address of the receiver from
a hidden service map. For each m-flow, the MC randomly
selects a pre-calculated shortest path between the initiator and
responder. If the path length is less than N , a new forwarding
path with length larger than N will be calculated. After
determining the routing path, the MC chooses N switches

along the routing path as MNs. Then the MC determines the
m-addresses on each MN. Finally, all the routings are installed
to the corresponding switches. The MN number indicates the
privacy level of an m-flow, and the more MNs will cause
more overheads. We allow users to trade the privacy for
performance. We will discuss how to generate m-addresses
in Section IV-B3.

3) Collision Avoidance: All the m-addresses should be in
the same network namespace (or subnet) to enhance the
anonymity of the m-flow. Therefore, routing collision between
two m-flows, or an m-flow and a common flow could happen,
which will lead to errors.

Collision Examples: Routing conflicts could happen when
two or more flows are forwarded through the same port at a
switch. The following examples show three routing conflict
scenes. To simplify the description, we assume the two-tuple
< src_ip, dst_ip > identifies a flow on each switch. (1) The
packet addresses of two flows f1, f2, are changed to the same
one on the same switch, as shown in Fig. 3(a). (2) The packet
addresses of a flow f1 are changed to the same as another
flow f2 on the same switch, as shown in Fig. 3(b). (3) The
packet addresses of two flows f1, f2 are the same before
they reach the same switch, but the switch does not change
the addresses of both flows, as shown in Fig. 3(c). The root
cause of routing conflicts is that, the m-flow will use variable
addresses during communication. Therefore, an m-flow may
occupy the addresses of a common flow, or two m-flows may
use the same addresses simultaneously.

Collision Avoidance Mechanism: To avoid routing conflicts,
we design a collision avoidance mechanism. The basic idea is
to ensure each flow has a unique match entry on any switch.

First, to avoid collisions between a common flow and an
m-flow, we use MPLS [16] label to distinguish them. Here
we just use MPLS field for tagging, so that we can distinguish
the flows carrying different three-tuple 〈src_ip, dst_ip, mpls〉.
We divide the MPLS label into two disjoint categories, one
used to mark the common flows (CF ), and the other used to
mark the m-flows (MF ). Only the MC knows which MPLS
labels are in CF and which are in MF . We will describe how
to divide the MPLS label sets later.

Second, in order to avoid conflicts between dif-
ferent m-flows, we design an M-Address Generation
Algorithm (MAGA). The main idea behind MAGA is to
reasonably divide the address space into disjoint classes, and
map the m-addresses of each m-flow (or mimic channel) into
different address spaces. Therefore, for each m-flow, it can
randomly select an m-address from its address space each
time, avoiding collision with any other m-flows. For simplicity
in description, we suppose each mimic channel contains only
one m-flow. Specifically, for an m-flow, the real address
is 〈src_ip, dst_ip〉, and an MN should convert the address
into m-address 〈m_src_ip, m_dst_ip〉. In order to reduce the
possibility of m-address collision among different m-flows,
we add MPLS label for tagging. That is, we use the three-
tuple 〈m_src_ip, m_dst_ip, m_mpls〉 to uniquely identify an
m-flow on each switch.

We use a hash function f(x, y, z) to map the m-addresses
of each m-flow to different address spaces. In that case, given



3772 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 6, DECEMBER 2017

Fig. 3. Examples of routing collision. (a) Two different addresses are changed to the same one. (b) One address is changed to the same one with another.
(c) Two flows with the same address are forwarded to the same port.

Fig. 4. Hash function demonstration.

two different values Vm, Vn, we can get two disjoint three-
tuple sets A1 and A2, which satisfy that for any (a, b, c) ∈ A1,
(x, y, z) ∈ A2, satisfy f(a, b, c) = Vm and f(x, y, z) = Vn,
but (a, b, c) �= (x, y, z), as demonstrated in Fig. 4. Therefore,
if we give each m-flow a unique ID, and let any m-address
(x, y, z) of an m-flow satisfies f(x, y, z) = ID, the routing
collision between different m-flows can be avoided.

The main point is to ensure that each m-flow has a
unique ID. A simple method is to monotonically increase the
ID when a new m-flow arrives, and recover the expired ID
when an m-flow is closed. Performed naively, a global hash
function for all MNs is enough. However, in this scheme, all
m-addresses (on all MNs) are constrained by a single hash
function, which will result in poor security. For example,
an adversary can compromise an MN, and try to find out the
hash function by analyzing the m-addresses on the MN. Once
an adversary knows the hash function, he can associate the
packets within the same m-address space to break anonymity.

To solve the above-mentioned issues and improve
anonymity of MIC, we set an independent hash function
for each MN rather than a uniform hash function for all.
Therefore, the adversary cannot obtain all the hash functions
on all MNs easily, so making it hard to associate with the
m-flows. However, as each MN has an independent hash
function, we can only ensure no conflicts among m-addresses
within the same MN, but not that between different MNs.
Fig. 3(c) shows an example of m-addresses conflict between
two different MNs (if f2 is an m-flow).

To avoid this kind of conflicts, we use the MPLS label
to ensure that the m-addresses between different MNs never
conflict. Again, we divide the MPLS into multiple disjoint
sets, and map the MPLS sets to each MN. Therefore,
the m-addresses on different MNs have different MPLS labels,
which will avoid m-addresses conflicts among different MNs.
To ensure anonymity, for any given MPLS label, only the MC
knows which MN the label corresponds to. Similarly, we use
a hash function g(x) to classify the MPLS sets, and map the

Fig. 5. Fat-tree Topology.

sets to each MN. Specifically, each MN has a unique S_ID.
For an MN M whose S_ID is S, if an MPLS label m satisfies
g(m) = S, m is in the set for M .

Thus, the key point in MAGA is to build two hash functions
f(x, y, z) and g(x). For f(x, y, z), our goal is that for a given
function value V , we can get a three-tuple (a, b, c) which
satisfies f(a, b, c) = V . Therefore, function f(x, y, z) must
be reversible on at least one variable. In this case, we can
first determine two variables randomly, and then determine
the rest variable using the inverse function, and finally get the
three-tuple m-address. In order to ensure all the variables of
this function are integers, we use XOR or shift operation to
build the function. For example, a simple f(x, y, z) can be
constructed as follow.

f(x, y, z) = [(x ⊕ A0) � A1] ⊕ [(x ⊕ A2) � A3]
⊕ [(y ⊕ B0) � B1] ⊕ [(y ⊕ B2) � B3]
⊕ [(z ⊕ C0) � C1] (1)

Then the inverse function for variable z is :

f−1
z (v, x, y) = v ⊕ [(x ⊕ A0) � A1] ⊕ [(x ⊕ A2) � A3]

⊕ [(y ⊕ B0) � B1] ⊕ [(y ⊕ B2) � B3]
� C1 ⊕ C0 (2)

A0, A1, A2, A2, B0, B1, B2, B3, C0, C1 are parameters,
which can be different for different MN to build different hash
functions.

To avoid an adversary distinguish the m-flows and com-
mon flows by observing the source/destination IP addresses,
the m_src_ip and m_dst_ip should subject to different
restrictions on different MNs. For example, for a Fat-tree
topology as shown in Fig. 5, the source IP of packets forward
out to port 3 should be restricted to {1, 2} and {1, 2, 3, 4},
respectively at switch S1 and S2. Meanwhile, as previ-
ously described, the MPLS label should be restricted to
different sets on different MNs to avoid m-addresses con-
flicts among different MNs. As a result, all the three
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elements in 〈m_src_ip, m_dst_ip, m_mpls〉 cannot be arbi-
trarily selected. To get a three-tuple which satisfies all
the restrictions quickly, we divide the MPLS to two parts
mpls1 and mpls2, of which the mpls1 is subject to
the restriction of distinguishing different MNs, but the
mpls2 is not. Therefore, getting a satisfied three-tuple
〈m_src_ip, m_dst_ip, m_mpls〉 is equivalent to getting a
four-tuple 〈m_src_ip, m_dst_ip, mpls1, mpls2〉. We con-
struct a four variables hash function F (α, β, γ, δ) and the
inverse function for variable δ, F−1

δ (v, α, β, γ) similar to
f(x, y, z) and f−1

z (v, x, y), respectively. Finally, we first
randomly select a qualifying m_src_ip, m_dst_ip, mpls1,
and then calculate out the mpls2 using the inverse function
F−1

δ (v, α, β, γ).
For g(x), since there is only one variable, it is difficult

to construct a function which meets the requirement. Hence,
we divide the variable x into multiple independent variables
in bits. For example, a simple solution is to divide the variable
x into high bytes x1 and low bytes x2. Suppose the variable
x has 32bits, x1 is the high 16bits and x2 is the low 16bits.
Therefore, the function g(x) is equivalent to h(x1, x2). We can
construct h(x1, x2) and h−1

x2
(v, x1) similar to f(x, y, z) and

f−1
z (v, x, y), respectively.

For an MN, if its S_ID is S, any MPLS label whose
mpls1 on it should satisfy g(mpls1) = S. Given the hash
value S, we first randomly select the high 16bits x1, and then
calculate out the corresponding low 16bits x2 using the inverse
function h−1

x2
(v, x1), finally the mpls1 = x1 � 16 + x2.

It is worth noting that, in order to enhance security, we can
make it harder for the adversary to obtain the hash function by
dividing the variable x in the more random way, or dividing
x into more sub-variables. Similarly, for the common flows,
we assign a unique function value C to it, and let any MPLS
whose mpls1 satisfy g(mpls1) = C tags the common flows.
The pseudocode of M-Address Generation Algorithm is shown
in Algorithm 1.

Algorithm 1 M-Address Generation Algorithm

1: // Randomly select the m_src_addr and m_dst_addr;
2: M.m_src_addr = RandomSelect();
3: M.m_dst_addr = RandomSelect();
4: // Determine the mpls1: (1). Randomly select the x1; (2).

Calculate out the x2 using h−1;
5: x1 = RandomSelect();
6: x2 = h−1(S, x1);
7: mpls1 = combine(x1, x2);
8: // Calculate out the mpls2 using F−1

9: mpls2=F−1(V, M.m_src_addr,M.m_dst_addr,mpls1);
10: M.m_mpls = combine(mpls1, mpls2);
11: return M ;

C. Traffic-Analysis Resistance

An adversary may observe and correlate the traffic at some
places (switches, links or servers) in the network, seeking to
find out the communication participants or what operations are
processing. To enhance traffic-analysis resistance, we employ

three mechanisms, including the multiple m-flows, dynamic
m-flows and partial multicast mechanisms.

Multiple M-Flows Mechanism: MIC aims to achieve anony-
mous communication with good performance and deploya-
bility which can be deployed and used in the practical data
centers. The commercial SDN switches can only process the
rules defined by southbound interfaces, like OpenFlow, but
has no user-defined interfaces. Therefore, we do not delay,
encrypt/decrypt or batch traffic on MNs, but just modify
the packet header. To defend the size-based traffic analysis,
we choose to mimic the traffic size at the source, which moti-
vates us to employ multiple m-flows mechanism. Specifically,
each mimic channel may consist of several m-flows, and each
m-flow has independent routing path, MNs and m-addresses.
The initiator divides the user data into slices, and each m-flow
carries different amount of slices. As the traffic is divided into
multiple pieces, an adversary cannot obtain the real size of the
traffic unless he knows the m-flow number and has correlated
all the m-flows.

Dynamic M-Flows Mechanism: To prevent an adversary
from correlating the communication participants and obtain-
ing the traffic patterns by long term traffic observing and
iterated switch compromise, we should periodically update
the m-flows’ forwarding rules (mostly for the long term
communications) during lifetime. Specifically, for an m-flow,
the routing path, MNs and corresponding m-addresses will
be changed. Performed naively, all the m-flows in a channel
will be updated periodically in a synchronized way. However,
an adversary may correlate the m-flows in the same channel
by observing the flow changing frequency. For example, if an
adversary observes that there are three flows disappear accom-
panied by three new flows emerging, then he can correlate
the three flows to the same channel with high probability.
Therefore, we update each m-flow in independent way, with
randomized timing and variable frequency, to defend above-
mentioned attacks.

Partial Multicast Mechanism: An adversary may observe
all the ingress and egress traffic on an MN, and correlates the
m-flow at the MN. Since the MN processes no cryptographic
operations on packets, the packets in the same m-flow have the
same payloads at each hop. An adversary can correlate with
them by checking the payloads of each packets. MIC cannot
defeat such end-to-end correlation, but uses partial multicast
mechanism to maximally decrease the success rate of this
correlation. More specifically, at an MN, we will replicate the
input packet to multiple packets with different m-addresses,
and send the packets out from different ports simultaneously.
But only one of the output packets will finally reach the
receiver, the others will be dropped in the next hop, as show
in Fig. 6. This may be useful at the edge MNs.

D. Unlinkability

MIC achieves unlinkability by changing the packet header
at multiple switches.

Sender Anonymity: MIC cannot hide the sender address if
an adversary observes traffic at one point between the sender
and the first MN. However, the goal in this paper is not
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Fig. 6. Partial multicast demonstration. The MN S1 will forward out three
packets P2, P3 and P4 when receiving P1, but P2 and P4 will be drop at
next hop.

to provide strong anonymity at any cost, but to break the
correlation between the sender and the receiver. In fact, as any
switch in the network can be an MN, an adversary cannot
tell whether the packet header has been modified by an MN,
unless he compromises the first switch which direct links to
the sender.

Receiver Anonymity: Receiver anonymity can be easily
realized in MIC. Unlike the previous anonymity systems, MIC
needs no additional rendezvous. The MC, which has the global
view of each mimic channel can achieve the similar function-
ality as rendezvous or hidden service in traditional anonymity
approaches. The hidden receiver first sends its contact infor-
mation to the MC for anonymous service registration. The MC
then adds the receiver to a hidden service map. The initiator
client obtains the service name (or nickname) of the hidden
receiver out of band and constructs a mimic channel using the
service name. As the MC knows about the location and iden-
tify of the receiver, the channel can be constructed as normal.

V. SECURITY ANALYSIS

MIC is designed to achieve anonymous communication in
SDN-based data centers. We discuss a variety of attacks within
our threat model and how MIC withstands them.

Compromising Switches: An adversary may compro-
mise one or several switches, which can be the common
switches (non-MNs) or the MNs, along a transmission path.
We consider the following cases. 1) If an adversary compro-
mises a switch between the sender and the first MN, he can
obtain the sender’s address but not the receiver’s; 2) If an
adversary compromises a switch between the last MN and
the receiver, he can obtain the receiver’s address but not the
sender’s; 3) If an adversary compromises a switch between the
first MN and the last MN, he can obtain neither the sender’s
nor the receiver’s address. Therefore, the adversary cannot
obtain both the sender and the receiver at any single point,
and the global adversary is out of our threat model. As any
switch in the network is likely to be an MN, an adversary
cannot tell which is the first (or last) MN for a specific flow.

Compromising the Initiator or Responder: The adversary
compromises the initiator (or the responder), seeking to obtain
the identity of the node which is communicating with it,
to determine the next attack target. If the responder is a hidden
receiver, the initiator does not know the identity of the respon-
der, and the responder has no idea of the initiator. Therefore,
compromising the initiator (or the responder) cannot break the
unlinkability of an m-flow.

Traffic Observing Attack: The adversary may observe
(e.g., using the mirror ports in switches) the traffic on a switch,
and analyze the traffic to correlate ingress and egress packets
in the same flow. By iterated traffic analysis, the adversary
may eventually correlate the entire m-flow. The observation
of the global traffic in data centers is unproductive, since the
mirror ports are not enabled on all switches by default. Our
partial multicast mechanism helps to prevent the adversary
correlating with ingress and egress packets at a single MN.

Size- or Rate-Based Traffic-Analysis: The adversary may
count the packet number (or size) and transmission rate at var-
ious points, seeking to analyze the traffic patterns (size or rate)
of a dedicated initiator (or responder), thereby inferring what
operations or businesses are processing. Our multiple m-flow
mechanism can reduce the effectiveness of this attack signifi-
cantly. The adversary does not know the flow number within
a channel, and it is hard to correlate the flows in the same
channel even if he knows the number. Even if an adversary
has obtained an m-flow’s traffic pattern, he cannot know the
channel’s traffic pattern as well.

Denial-of-Service (DoS) Attack: The traditional overlay-
based anonymity systems are vulnerable to DoS attacks. As the
mixs (or relays) in a circuit are assigned by the initiator client,
malicious users can easily launch DoS or DDoS attacks by
creating a large mount anonymous request via the same mixs
to consume their resources. As a result, due to the CPU-
expensive asymmetric cryptography operations and limited
packets forwarding capability (typically a mix has one or two
network interfaces), the overlay-based anonymity systems face
low vulnerability against DoS attacks. MIC is robust against
DoS attacks in three aspects. 1) All the MNs are switch nodes,
and thereby have strong packets forwarding capabilities.
2) All the transmission paths are determined by the MC,
so users cannot assign the MNs or routing path, and all
traffic will be evenly distributed to different transmission paths.
3) There is no cryptography operations on MNs, and therefore
can reduce CPU consumption significantly.

Payload-Based Correlation: As there are no cryptographic
operations on each MN, the adversary may correlate the
packets by checking their payloads. MIC can reduce the
effective of this correlation by the partial multicast mechanism.
The adversary can observe multiple packets with the same
payloads at different places, therefore he cannot confirm the
correlation. Only when the adversary correlates the packets
with the sender and receiver’s real addresses, respectively,
the adversary can reveal the identities of the communication
participants. We are also considering of using the Internet
Protocol Security (IPsec) to encrypt the payloads on each
MN, so that the payload-based correlation can be prevented.
However, this requires modifications on the SDN switches and
will incur much higher overhead.

Anonymous Abuse: Most of the traditional anonymity sys-
tems are faced with the abuse issues. Users can send unlimited
untraceable traffic to anonymity systems, causing issues like
spamming,4 sybil attack5 and illegal trade. In data centers,

4https://en.wikipedia.org/wiki/Spamming
5https://en.wikipedia.org/wiki/Sybil_attack
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anonymous abuse can cause great waste of resources. Unlike
the previous anonymity systems, MIC provides anonymous
communications to protect user privacy against malicious
users or hackers but not the Cloud Service Providers (because
the entire network in data centers must be managed by the
CSP). Therefore, the MC, which has the global view of the
network, can address the anonymous abuse issues effectively.

VI. DEPLOYMENT AND APPLICABILITY

In this section, we discuss how to enable MIC co-existing
with other systems which are potential incompatible with MIC
and how to deploy MIC in distributed systems, e.g. distributed
file system CapFS.

A. Co-Existence With Traditional Systems

MIC modifies the packet header at switch nodes to achieve
anonymity. However, many other systems in the network
need to use or analyze the packer header information to
facilitate their functions, such as the network packet analysis
systems (e.g., Wireshark)6 which will de-capsulate the packet
header to display or analyze the network traffic, the intru-
sion detection systems (e.g., Snort)7 which may check the
packet header to detect malicious activity, and the firewall
systems (e.g., Iptables)8 which may check the packet address
to prevent unauthorized communications. As MIC changes
the packet header, the real packet header and traffic patterns
are concealed. Therefore, exceptions or errors may occur in
above-mentioned systems when they are deployed in the same
network where MIC resides. All these systems are important
components of the network, so MIC should be able to coexist
with them.

In order to address the problem, we provide interfaces to
these systems for converting the m-flow to the original flow.
The key point is to restore the packet header of the m-flow
back to the original one, which is the reverse process of our
M-address Generation Algorithm. Here we briefly summarize
the workflow of converting the original flow into the m-flow
and the reverse process, i.e., restoring the m-flow back to the
original flow.

1) Converting the Original Flow Into the m-Flow: MIC
translates the real packet header information into a fake one.
Specifically, the three-tuple < src_ip, dst_ip, mpls > is con-
verted into an m-address < m_src_ip, m_dst_ip, m_mpls >,
and the other items are modified accordingly. The workflow
of converting the original flow to m-flow can be found
in Section IV-B3.

2) Restoring the m-Flow Back to the Original Flow:
Similarly, we can restore the m-flow back to the original flow
through the reverse process. Specifically, we can calculate the
identity V of the flow using the m-address < m_src_ip,
m_dst_ip, m_mpls >, and then find the original header
information through the flow identity V . Therefore, we need
to store the original header of the flow (in an o_table) when

6https://www.wireshark.org/
7https://www.snort.org/
8https://en.wikipedia.org/wiki/Iptables

generating an m-flow. The workflow of restoring an m-flow
back to the original flow is shown as follows:

1) For an input packet, we first check the MPLS field. If the
MPLS is null or satisfies h(x1, x2) = C, then the flow
is a common flow.

2) Otherwise, the identity of the MN is S = h(x1, x2).
Then we find the hash function for the MN F () using
the S. The identity of the m-flow can be calculated as
V = F (m_src_ip, m_dst_ip, mpls1, mpls2).

3) Finally, the corresponding original header information
of the m-flow can be found in the stored table o_table.

We can expose the interfaces for restoring the m-flow to the
needed systems, so that MIC can co-exist with them. In order
to ensure security, the systems which request for the interfaces
should register in the MC controller and get the corresponding
access permission before they use the interfaces. The MC
controller can grant different levels of permissions for different
systems. For example, for some traffic monitoring or intrusion
detection systems, they only need to distinguish the real
abnormal network behaviors and the m-flow, but do not
need to know the exact packet information (such as the
IP address and port). Therefore, we can provide them low
permission level interfaces, so that they can use it to identify
the m-flows without knowing the exact flow information.
However, for the firewall systems, they have to know the exact
packet information so that they can match the rules precisely
(e.g. blocking all the flow from A to B). Therefore, we should
give them the fully authorized interfaces, so that they can
restore the m-flow to original flow.

B. Application Integration

MIC is designed for data center applications, which can be
easily deployed in distributed systems. There are two ways
in MIC deployment, including the full deployment and the
lightweight deployment. In the full deployment, the applica-
tions in both the initiator and responder should modify their
implementation to support MIC. The initiator can establish a
mimic channel explicitly before data transmission, so that can
use nicknames instead of read IP addresses to communicate
with the responder, achieving receiver anonymity.

In the lightweight deployment (which is denoted as L-MIC),
MIC eliminates the need of modification in the applications by
sacrificing a certain level of anonymity. The L-MIC will auto-
matically generate an m-flow for the session when the initiator
creates a session between the responder, so that the applica-
tions can use MIC transparently. Users or administrators can
specify the host pairs which should communicate using MIC
in advance. When a Packet-in event is triggered for routing
generation, the MC will check the packet header to decide
whether to generate an m-flow. However, as no modification
is involved in the initiator, the identity of the responder must
be acquired by the initiator, so the receiver anonymity fails.
Moreover, as both the sender and the receiver addresses are
carried by the packets between the initiator and the first MN,
once the first MN is compromised, the adversary can break
the unlinkability of the flow. To relieve the effectiveness of
this kind of attacks, L-MIC can be deployed in the virtualized
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Fig. 7. The architecture of MIC-based CapFS.

environment, where the host server is under the protection of
other security systems like intrusion detection systems (IDS).
In this scenario, the virtual switches in the host server can be
regarded as the first MN, so any nodes out of the host server
cannot obtain both the sender and receiver identities.

In order to verify the applicability of the MIC, we integrate
MIC in the RPC (Remote Procedure Call) [17], [18] and then
use it to achieve anonymity in our distributed file system
CapFS. RPC9 is a widely used communication protocol in
distributed systems, such as NFS.10 It hides the complexity
of the low-level network operations across different networks
and provides uniform interfaces for upper-level applications,
enabling the applications to invoke the remote procedures
transparently just like local calls.

We build our distributed file system CapFS using the Sun’s
Transport-Independent RPC (TI-RPC) library.11 CapFS con-
sists of Clients, which provides POSIX-compliant file access
interfaces for applications, OSSs, which store the data objects,
and MDSs, which store the meta-data information of the data
objects. The OSSs and MDSs are key nodes in the system.
If an adversary want to crash the system, then he can first
identify one of the MDSs by analyzing at the network or at one
of the Client nodes and lunch DDoS attacks after that. MIC
can protect the system against this kind of attacks effectively.
In our anonymous CapFS, each communication inside CapFS
is anonymous, therefore, it is hard for the adversaries to locate
the key nodes of the system or have a sight of the system
deployment details.

To achieve this, we first implement the MIC-based RPC,
just replacing the socket interfaces in the RPC with the MIC
socket-like interfaces. Then, we use the MIC-based RPC to
replace the original RPC in CapFS. As no real IP address is
used in the system, we have to assign each node a nickname,
such as mds0, osd0, client0 and so forth. Each node should
request to the MC for hidden service registration at initial-
ization, so that others can reach it without knowing its real
IP address. Therefore, each communication inside CapFS is
achieved using the nicknames. As the MC keeps the identity of
each node in the system, access control can also be enforced.
The architecture of MIC-based CapFS is illustrated in Fig. 7.

VII. EVALUATION

We build a test platform on Mininet [19]. The hardware
consists of one server running Ubuntu 12.04.5 LTS operating

9https://en.wikipedia.org/wiki/Remote_procedure_call
10https://en.wikipedia.org/wiki/Network_File_System
11https://sourceforge.net/projects/libtirpc/

Fig. 8. Route setup time comparison among MIC, Tor, TCP and SSL.

Fig. 9. Latency comparison among MIC, Tor, TCP and SSL.

system, with Intel (R) Xeon (R) E5-2620 @ 2.00GHz CPU,
32GB RAM. We install Mininet 2.2.0, Openvswitch 2.1.0,
and Ryu 3.17 [20] on it. The network consists of 16 hosts
interconnected using a Fat-tree of twenty 4-port switches,
as shown in Fig. 5. We evaluate the performance of MIC
compared with Tor, TCP and SSL in terms of route setup
latency, transmission latency and throughput. MIC-TCP and
MIC-SSL in our evaluation are two MIC versions which based
on TCP and SSL, respectively.

MIC Implementation: MIC prototype consists of two mod-
ules: the user-end module and the MC module. We implement
the user-end module on Linux platform. MIC employs typical
C/S model, providing socket like programming APIs, and thus
a programmer can use MIC for anonymous communication
easily. We implement the MC on Ryu, a popular SDN con-
troller platform. The communication between the client and the
MC is encrypted using private key. When a client builds up a
mimic channel for the first time, he should exchange a private
key with the MC in advance using asymmetric encryption
algorithms, like RSA [21] or D-H [22].

A. Route Setup Latency

We evaluate the route setup latency of MIC, Tor, TCP
and SSL. For MIC, we measure the “MIC_connect” func-
tion time on the initiator. We use the AES function in
OpenSSL for encrypting/decrypting the request packet. For
Tor, we measure the “connect” time on the client. Specifically,
we redirect the traffic to our local Tor testbed by using the
“torsocks” command, and vary the route length by modify-
ing the “DEFAULT_ROUTE_LEN” in the Tor source code.
We also evaluate TCP and SSL as the base line.

Fig. 8 plots the results of the route setup time varying the
route length. The route length is the number of relay stages
along the path. As one would expect, MIC outperforms Tor
in route setup time, due to the more lightweight processing
and shorter transmission path. The route setup time increases
with increased route length in overlay-based Tor but remains
nearly the same in in-network based MIC. That is because the
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Fig. 10. Throughput comparison among MIC, Tor, TCP and SSL. (a) and (b) show the throughput comparison, (c) shows the CPU usage of evaluation (a).

operations on each MN are very lightweight, and the actual
length of transmission path will not increase (significantly)
with increased route length. Compare to the base line TCP
and SSL, MIC requires additional time for sending request to
the MC, therefore, resulting a little overhead.

B. Latency and Throughput

We evaluate the latency and throughput among MIC, Tor,
TCP and SSL after the session is established. In the latency
evaluation, we measure the time from when the sender
sends 10 bytes data to the receiver until the receiver sends
10 bytes data back. Fig. 9 plots the results of latency. As can
be seen from the results, MIC (including MIC-TCP and
MIC-SSL) outperforms Tor significantly in terms of latency,
and MIC-TCP is comparable with TCP, MIC-SSL is compara-
ble with SSL. Compared to Tor, MIC has fewer cryptographic
operations and shorter transmission path (the network paths
and host protocol stacks), so that achieving lower latency.
Compared to TCP (or SSL), MIC only incurs more “actions”
in flow-table on MNs, whose overhead is substantially
negligible.

In the throughput evaluation, we use Iperf for Tor and
TCP test, and a modified Iperf for MIC and SSL. We first
evaluate the throughput of one flow in different path lengths,
and then evaluate the average throughput of various number
of flows (the path length is set to default 3). Fig. 10(a) and (b)
shows the throughput comparison among MIC, Tor, TCP
and SSL. MIC achieves higher throughput than Tor due to
its lightweight design. It’s not a surprise to see Tor’s average
throughput decreases badly as the path length or flow number
increases, as Tor employs the heavyweight overlay-based
design. In Tor, each anonymous communication will occupy
a large number of redundant network and computational
resources than a common (non-anonymity) communication
needs. Therefore, Tor will saturate the data center network
quickly as the flow number increases, resulting in traffic
congestion. However, MIC does not induce much additional
length over the original (non-anonymity) path length, thereby
can achieve high performance which is comparable with
TCP (or SSL).

We also evaluate the overall CPU usage of MIC, Tor, TCP
and SSL when performing the first throughput evaluation,
as shown in Fig. 10 (c). The results show that the CPU over-
head on MIC has a narrow increasement than TCP (or SSL)

Fig. 11. Performance comparison among MIC-based applications.
(a) Throughput comparison between RPC-O and RPC-M. (b) Write and Read
throughput comparison between CapFS-O and CapFS-M.

due to the extra operations on virtual switches. However, Tor
suffers from extremely high overhead due to the significant
redundant route paths and intermediate operations.

C. Application-Based Evaluation

We evaluate the performance comparison between the orig-
inal RPC (denoted as RPC-O) and the MIC-based RPC
(denoted as RPC-M); the original distributed file system
(denoted as CapFS-O) and the MIC-based CapFS (denoted
as CapFS-M).

First, we evaluate the throughput of the RPC. During the
evaluation, the sender transmits 1GB data to the receiver
and each remote call carries 1MB data. Fig. 11 (a) polts
the throughput comparison between the RPC-O and RPC-M.
As can be seen from the result, the RPC-M is comparable
with RPC-O in terms of throughput, as MIC only incurs little
overhead over TCP.

Second, we evaluate the read and write performance of
the CapFS. As MIC prototype is implemented in user space,
we choose to use the user-space CapFS version which is based
on FUSE (Filesystem in Userspace).12 Unfortunately, we fail
to mount our FUSE based Client in our Mininet test platform,
so we further build a VM-based testbed. In this testbed,
the host server runs Ubuntu 12.04 operating system, and three
VMs, which are configured as MDS, OSS and Client nodes
in CapFS respectively, are created by KVM (Kernel Virtual
Machine).13 The VMs are interconnected by Openvswitch
instances installed on the host server. We use Iozone14 bench-
mark for CapFS performance evaluation. Fig. 11 (b) plots the
results. It’s not a surprise to see CapFS-M is analogous to

12https://en.wikipedia.org/wiki/Filesystem_in_Userspace
13http://www.linux-kvm.org/page/Main_Page
14http://www.iozone.org/
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TABLE I

PER-SWITCH RULE NUMBER VARYING THE TOPOLOGY
SCALE AND HOST NUMBER

TABLE II

GENERATION TIMES FOR DIFFERENT M-FLOW NUMBER

CapFS-O in terms of read and write throughput, as negligible
overhead is incurred in MIC and RPC-M.

In summary, from the evaluations presented above we can
see that, MIC has very good applicability and negligible
overhead, which can be easily deployed in most of the existing
distributed systems inside data centers.

D. Scalability Analysis

To maximize the anonymity of the m-flows, the forwarding
rules of each m-flow should be as randomized as possible.
Therefore, MIC cannot leverage the wildcard rule to boost
the forwarding efficiency, which will naturally cause large
number of rules in switches. To mitigate this issue, we should
balance the m-flows across each path so that each switch will
carry the similar number of rules. Simply, when generating
the forwarding routing, we randomly select a equal cost path
for each m-flow. We evaluate the per-switch rule number
when varying the topology scale (Fat-Tree topology) and host
number, as shown in Table I. As the storage capacity of current
SDN switches is around 1500 rules, the results indicate that
MIC can work well in a large data center with 27648 hosts
when 10 flows per host.

As can be seen from Section IV-B2, the time complexity
of routing calculation of MIC is O(|F |), where the |F | is the
m-flow number of a channel. By default, each MIC has one
m-flow, and the m-flow number of a single MIC is generally
less than 10. We evaluate the generation time of a mimic
channel on the MC, as shown in Table II. The generation time
includes routing calculation time and install time. The install
time is depended on the design of the SDN controller and
switches, which is not the concern of this paper. Moreover,
much studies have tried to reduce the rule update latency on
switches, such as RuleTris [23]. From the results in Table II
we can see that the controller can process around 2000 flows
per second. In our implementation, we use the Ryu open
source SDN controller, which only supports single thread
processing. We believe that, with multi-thread processing,
the controller can process much more flows per second.

As we adopt the centralized approaches, MIC will naturally
suffer from the single point failure and scalability issues.
Fortunately, lots of efforts have been made on the scalability
issues in SDN, such as distributed controllers [24]. MIC can
be easily deployed on distributed controllers. As long as we
ensure each MIC has a unique ID, our collision avoidance
mechanism can guarantee the correctness of routing, and
each mimic channel can be handled by a single controller
independently. Therefore, we can assign a unique ID space for
each controller to make MIC work among multiple controllers.

VIII. RELATED WORK

To protect the identity of the user or service provider
and defeat traffic-analysis attacks, anonymity systems has
been extensively studied. Prior anonymity systems are pri-
marily based on Mix-net [25], DC-net [26], verifiable shuffles
[27], [28] or broadcast (multicast). Existing anonymity sys-
tems can be divided into two categories in accordance with
the latency: high-latency anonymity systems and low-latency
anonymity systems.

High-Latency Anonymity Systems: These systems are
mainly designed for applications which requires strong
anonymity but can tolerate significant high latency, such as
E-mail, including Babel [29], Mixmaster [30], Mixminion [4].
This systems are based on Mix-Nets, in which the mes-
sages are typically delayed for hours for batching to maxi-
mize anonymity and achieve strong traffic-analysis resistance
against even a global adversary.

Low-Latency Anonymity Systems: These systems are mainly
designed for interactive applications like web browsing and
Internet chat. Anonymizer [31] is the simplest low-latency
anonymity system, which has only one proxy. Onion rout-
ing [32] is a real-time variant of Mix-Net in early time.
Before transmitting messages, the sender picks up a list of
mixs (called relays) and constructs a bi-directional circuit with
the receiver via the intermediate relays. The sender layered-
encrypts the messages, and each relay decrypts them then
forwards them to the next hop in the circuit. Each relay
knows only its previous and next hops, but has no idea of
the communication participants. The second-generation Onion
Routing, Tor [6] is volunteer-based, and becomes the most
popular anonymity system deploy in the real word. A large
number of studies focus on the attacks on Tor, such as by
cell-counting [33], cell manipulating [34] and flow correla-
tion [35], [36]. Fu et al. [37], [38] also propose modeling and
analysis on performance in mix networks.

In P2P architecture based anonymity systems, each node
can be either the traffic initiator (or recipient) or forwarder.
Crowds [5] hides the traffic originator among a large number
of members. MorphMix [39] makes anyone can easily join
the system instead of building static mix network, and pro-
vides collision detection mechanism to identify compromised
paths to enhance robust. Tarzan [40] uses cover traffic to
obscure traffic patterns to defeat global observers. Aqua [41]
focuses on providing high-bandwidth and strong anonymity
communication for BitTorrent. Herd [42] provides scalable and
traffic-analysis resistant anonymity network for VoIP systems.
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Hordes [43], P5 [44] and Herbivore [45] adopt mul-
ticast or broadcast mechanisms to achieve anonymity.
Dissent [7] is built on DC-Net and verifiable shuffle, providing
low latency, high scalability and strong anonymity. Infor-
mation Slicing [46] tries to achieve anonymity communica-
tion without using public key through multi-path and secret
sharing. LAP [47] provides low-latency and lightweight
anonymity to protect daily online activities which are impatient
to wait. iTAP [48] adopts the same idea of using SDN to
prevent traffic analysis, but not focuses on data centers. As far
as we are aware, MIC is the first anonymity scheme designed
for data centers.

IX. CONCLUSION

We present MIC, an efficient anonymity scheme aimed
for data center environment. Different from the traditional
overlay-based architecture, MIC adopts an in-network design,
which conceals the communication participants’ identifies by
modifying the source/destination addresses (e.g., MAC, IP
and port) at switch nodes. To address the challenge of potential
routing collision in MIC, we propose a routing collision
avoidance mechanism. We also propose three mechanisms,
the Multiple M-flows, Dynamic M-Flows and Partial Mul-
ticast mechanisms, to enhance the traffic-analysis resistance
of MIC, and discuss the solutions to enable MIC co-existing
with other systems. As a result, we can improve anonymity
of applications within data centers at negligible overhead.
Experimental results show that MIC outperforms Tor signifi-
cantly in performance, and is comparable with TCP (or SSL).
Moreover, we design and implement MIC-based distributed
file system (CapFS-M), and the experimental results on
CapFS-M show the applicability and efficiency of MIC.
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