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Non-volatile memory (NVM) technologies as persistent memory are promising candidates to complement or
replace DRAM for building future memory systems, due to having the advantages of high density, low power,
and non-volatility. In main memory systems, hashing index structures are fundamental building blocks to
provide fast query responses. However, hashing index structures originally designed for dynamic random
access memory (DRAM) become inefficient for persistent memory due to new challenges including hardware
limitations of NVM and the requirement of data consistency. To address these challenges, this article proposes
level hashing, a write-optimized and high-performance hashing index scheme with low-overhead consistency
guarantee and cost-efficient resizing. Level hashing provides a sharing-based two-level hash table, which
achieves constant-scale worst-case time complexity for search, insertion, deletion, and update operations,
and rarely incurs extra NVM writes. To guarantee the consistency with low overhead, level hashing leverages
log-free consistency schemes for deletion, insertion, and resizing operations, and an opportunistic log-free
scheme for update operation. To cost-efficiently resize this hash table, level hashing leverages an in-place
resizing scheme that only needs to rehash 1/3 of buckets instead of the entire table to expand a hash table
and rehash 2/3 of buckets to shrink a hash table, thus significantly improving the resizing performance and
reducing the number of rehashed buckets. Extensive experimental results show that the level hashing speeds
up insertions by 1.4X—3.0X, updates by 1.2x—2.1X, expanding by over 4.3X, and shrinking by over 1.4x while
maintaining high search and deletion performance compared with start-of-the-art hashing schemes.
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1 INTRODUCTION

As dynamic random access memory (DRAM) technology suffers from the limitations in den-
sity scaling and power leakage [41, 55], non-volatile memory (NVM) technologies, such as 3D
XPoint [24], phase-change memory (PCM) [60], resistive random-access memory (ReRAM) [1],
and spin-transfer torque random-access memory (STT-RAM) [2], are expected to substitute or
complement DRAM as the next-generation main memory. NVM as persistent memory is able to
persistently store data for instantaneous failure recovery. Due to the access latency close to DRAM
and byte-addressable benefit, persistent memory is directly accessed through the memory bus via
using central processing unit (CPU) load and store instructions, avoiding high overheads of con-
ventional block-based interfaces [10, 37, 62, 63]. Nevertheless, NVM typically suffers from low
write performance and limited write endurance [48, 66].

The significant changes of memory architectures and characteristics result in the inefficiency
of indexing data in the conventional manner that overlooks new NVM device properties and the
requirement of data consistency [32, 43, 57, 63, 67]. A large number of existing works have im-
proved tree-based index structures to efficiently adapt to persistent memory, such as consistent-
and-durable-data-structures (CDDS) B-tree [57], non-volatile (NV)-Tree [63], wB*-Tree [9], finger-
printing persistent (FP)-Tree [43], write optimal radix tree (WORT) [32], and failure-atomic shift
and failure-atomic in-place rebalance (FAST&FAIR) [23]. Tree-based index structures typically
have the search time complexity of average O(log(N)) where N is the size of data structures [4, 11].
Unlike tree-based index structures, hashing-based index structures are flat data structures, which
are able to achieve constant-scale search time complexity, i.e., O(1). Due to providing fast lookup
responses, hashing index structures have been widely used in main memory systems. For example,
they are used to index main memory databases [19, 30, 36, 64] and are fundamental components in
in-memory key-value stores [17, 33, 40, 49, 65], e.g., Redis and Memcached. However, when hash-
ing index structures are maintained in persistent memory, multiple non-trivial challenges exist,
which are rarely touched by existing work.

(1) High Overhead for Consistency Guarantee. Data structures maintained in persistent
memory should avoid any data inconsistency, when system failures (e.g., power loss and
system crashes) occur [20, 32, 43]. However, the new architecture that NVM is directly ac-
cessed through the memory bus results in high overhead to guarantee consistency. First,
memory writes are usually reordered by CPU and memory controller [10, 12]. To ensure
the ordering of memory writes for consistency guarantee, we have to employ cache line
flush and memory fence instructions, causing high performance overhead [9, 28, 42, 63].
Second, the atomic write unit for modern processors is generally no larger than the mem-
ory bus width (e.g., 8 bytes for 64-bit processors) [9, 12, 16, 59]. If the written data is larger
than an atomic write unit, we need to employ expensive logging or copy-on-write (CoW)
mechanisms to guarantee consistency [23, 32, 57, 63].

(2) Performance Degradation for Reducing Writes. Memory writes in NVM consume the
limited endurance and cause higher latency and energy than reads [48, 66]. Moreover,
more writes in persistent memory also cause more cache line flushes and memory fences
as well as possible logging or CoW operations, significantly decreasing the system perfor-
mance. Hence, write reduction matters in NVM. Previous work [14, 67] demonstrates that
common hashing schemes such as chained hashing, hopscotch hashing [22], and cuckoo
hashing [45, 54] usually cause many extra memory writes for dealing with hash colli-
sions. The write-friendly hashing schemes, such as PCM-friendly hash table (PFHT) [14]
and path hashing [67], are proposed to reduce NVM writes in hashing index structures
but at the cost of decreasing access performance (i.e., the throughput of search, insertion,
and deletion operations).
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(3) Cost Inefficiency for Resizing Hash Table. With the increase of the load factor (i.e.,
the ratio of the number of stored items to that of total storage units) of a hash table, the
number of hash collisions increases, resulting in the decrease of access performance as
well as insertion failure. At this time, the hash table needs to be resized via expanding its
size [18, 22, 46, 56]. Moreover, when the stored items are far fewer than the storage units
in a hash table, the hash table also needs to be resized via shrinking its size. Resizing a
hash table needs to create a new hash table whose size is usually doubled for expanding
or half for shrinking, and then iteratively rehash all the items in the old hash table into
the new one. Resizing is an expensive operation due to requiring O(N) time complexity
to complete where N is the number of items in the hash table. Resizing also incurs N
insertion operations, resulting in a large number of NVM writes with cache line flushes
and memory fences in persistent memory.

To address these challenges, this article proposes a write-optimized and high-performance hash-
ing index scheme for persistent memory, called level hashing [69], with low-overhead consistency
guarantee and cost-efficient resizing. Level hashing introduces a write-optimized two-level hash
table, i.e, level hash table, to achieve high-access performance even in the worst case. Moreover,
level hashing leverages log-free schemes to guarantee the consistency of write operations with
low overhead. To cost-efficiently resize the level hash table, level hashing leverages in-place ex-
panding and shrinking schemes to significantly improve the resizing performance and reduce the
number of NVM writes. Specifically, the contributions of this article are listed as follows:

— Write-optimized and High-performance Hash Table Structure. We propose a sharing-
based two-level hash table structure (Section 3.1), in which each search, deletion, and update
operation only needs to probe at most four buckets to find the target key-value item, and
hence, has the constant-scale worst-case time complexity with high performance. An inser-
tion probes at most four buckets to find an empty location in most cases, and in rare cases,
only moves at most one item, with the constant-scale worst-case time complexity.

— Cost-efficient Expanding and Shrinking. We propose a cost-efficient in-place resizing
scheme for level hashing (Section 3.2), which rehashes only 1/3 of buckets in the hash table
instead of the entire hash table to expand a hash table, and rehashes 2/3 buckets instead
of the entire hash table to shrink a hash table, thus significantly improving the resizing
performance and reducing NVM writes. Moreover, the in-place resizing scheme enables the
resizing process to take place in a single hash table. Hence, search and deletion operations
only need to probe one table during the resizing, improving the access performance.

— Low-overhead Consistency Guarantee. We propose log-free consistency guarantee
schemes for insertion, deletion, and resizing operations in level hashing (Section 3.3). The
three operations can be atomically executed for consistency guarantee by leveraging the
token in each bucket whose size is no larger than an atomic write unit, without the need of
expensive logging and CoW mechanisms. Moreover, for update operation, we propose an
opportunistic log-free scheme to update an item without the need of logging and CoW in
most cases. If the bucket storing the item to be updated has an empty slot, an item can be
atomically updated without using logging and CoW.

— Efficient Concurrency. We propose an efficient concurrent scheme for level hashing by
leveraging fine-grained locking (Section 3.4). The level hash table has no cascading writes,
which enables level hashing to efficiently support multi-reader and multi-writer concur-
rency via simply using fine-grained locking. An insertion locks only one slot in most cases,
and hence, the concurrent level hashing delivers high performance.
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— Real Implementation and Evaluation. We have implemented level hashing' and eval-
uated it in both real-world DRAM and simulated NVM platforms. Experimental results
demonstrate that level hashing achieves 1.4x—3.0x speedup for insertions, 1.2X-2.1X
speedup for updates, 4.3 speedup for expanding, and 1.4x speedup for shrinking a hash
table, while maintaining high search and deletion performance, compared with start-of-the-
art hashing schemes including BCH [17], PFHT [14], and path hashing [67]. The concurrent
level hashing improves the request throughput by 1.6 X —2.1x, compared with the start-of-
the-art concurrent hashing scheme, i.e., libcuckoo [34].

The rest of this article is organized as follows. The background and motivation are described in
Section 2. Section 3 presents the design of level hashing, and Section 4 presents the implementation
details. The performance evaluation is shown in Section 5. We discuss the related work in Section 6
and conclude this article in Section 7.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the data consistency guarantee in persistent memory. We then
present the background of hashing index structures.

2.1 Data Consistency in NVM

In order to efficiently handle possible system failures and achieve instantaneous failure recovery,
NVM has been well explored and exploited to build persistent memory systems. However, since
the persistent systems typically include volatile storage components, e.g., CPU caches and possible
DRAM, the potential problem of data crash consistency has to be addressed that is interpreted as
preventing data from being partially updated or loss on system failures. To guarantee data con-
sistency in persistent memory, it is essential to ensure the ordering of memory writes [9, 32, 63].
However, the CPU and memory controller usually reorder memory writes. We need to use the
cache line flush instruction (CLFLUSH for short), e.g., clflush, clflushopt, and clwb, and memory
fence instruction (MFENCE for short), e.g., mfence and sfence, to enforce the ordering of memory
writes, like existing state-of-the-art work [9, 32, 43, 57, 63]. The CLFULSH and MFENCE instructions
are provided by the Intel x86 architecture [26]. Specifically, CLFULSH evicts a dirty cache line from
CPU caches and writes it back to NVM. MFENCE issues a memory fence, which blocks the memory
access instructions after the fence, until those before the fence complete. Since only MFENCE can
order CLFLUSH, CLFLUSH is used with MFENCE to ensure the ordering of executing CLFLUSH instruc-
tions [26]. However, CLFLUSH and MFENCE instructions result in significant system performance
decrease [9, 12, 57]. Hence, it is more important to reduce writes in persistent memory.

It is well-recognized that the atomic memory write of NVM is 8 bytes, i.e., the memory bus
width for 64-bit CPUs [9, 32, 43, 57, 63]. If the size of the updated data is larger than 8 bytes and a
system failure occurs while performing the update, the data will be corrupted. Existing techniques,
such as logging and CoW mechanisms, are used to guarantee consistency of the data whose sizes
are larger than an atomic write. Logging techniques include undo logging and redo logging. Undo
logging first stores old data in a log before being modified and then updates them. Redo logging
first buffers the newly written data in a log and then updates the old data. The CoW first creates a
new copy of data and then performs updates on the copy. The pointers that point to the old data
are finally modified. Nevertheless, logging and CoW mechanisms have to write twice for each
updated data. The ordering of the two-time writes also needs to be ensured using CLFLUSH and
MFENCE instructions, significantly hurting the system performance.

I The source code of level hashing is available at https://github.com/Pfzuo/Level-Hashing.
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2.2 Hashing Index Structures for NVM

2.2.1 Conventional Hashing Schemes. Hashing index structures have been widely used in cur-
rent main memory systems, e.g., main memory databases [15, 19, 30, 36, 64], and in-memory key-
value stores [17, 33, 40, 49, 50], to provide fast query responses. Hash collisions, i.e., two or more
keys are hashed into the same bucket, are practically unavoidable in hashing index structures.
Chained hashing [29] is a popular scheme to deal with hash collisions, by storing the conflicting
items in a linked list via pointers. Nevertheless, the chained hashing consumes extra memory space
due to maintaining pointers and decreases access performance when the linked lists are too long.

Open addressing is another kind of hashing scheme to deal with hash collisions without us-
ing pointers, in which each item has a fixed probe sequence. The item must be in one bucket of its
probe sequence. Bucketized cuckoo hashing (BCH) [5, 17, 34] is a memory-efficient open-addressing
scheme, which is widely used due to the constant lookup time complexity in the worst case and
memory efficiency (i.e., achieving a high load factor). BCH uses f (f > 2) hash functions to com-
pute f bucket locations for each item. Each bucket includes multiple slots. An inserted item can be
stored in any empty slot in its corresponding f buckets. If all slots in the f buckets are occupied,
BCH randomly evicts an item in one slot. The evicted item further iteratively evicts other existing
items until finding an empty location. For a search operation, BCH probes at most f buckets and,
hence, has a constant search time complexity in the worst case. Due to sufficient flexibility with
only two hash functions, f = 2 is actually used in BCH [5, 14, 17, 34]. Hence, the BCH in our article
uses two hash functions.

2.2.2 Hashing Schemes for NVM. The hashing schemes mentioned above mainly consider the
properties of traditional memory devices, such as DRAM and SRAM. Unlike them, the new per-
sistent memory systems are tightly related with the significant changes of memory architectures
and characteristics, which bring the non-trivial challenges to hashing index structures. For ex-
ample, NVM typically has limited endurance and incurs higher write latency than DRAM [48,
66]. The chained hashing results in extra NVM writes due to the modifications of pointers and
BCH causes cascading NVM writes due to frequently evicting and rewriting items for insertion
operations, which exacerbate the endurance of NVM and the insertion performance of hash ta-
bles [14, 67]. More importantly, the traditional hashing schemes do not consider data consistency
and, hence, cannot directly work on persistent memory.

Hashing schemes [14, 67] have been improved to efficiently adapt to NVM, which mainly focus
on reducing NVM writes in hash tables. Debnath et al. [14] propose a PCM-friendly Hash Table
(PFHT) that is a variant of BCH for reducing writes to PCM. PFHT modifies the BCH to allow only
one-time eviction when inserting a new item, which can reduce NVM writes from frequent evic-
tions but results in low load factor. In order to improve the load factor, PFHT further uses a stash
to store the items failing to be inserted into the hash table. However, PFHT needs to linearly search
the stash when failing to find an item in the hash table, thus increasing the search latency. Our
previous work [67, 68] proposes the path hashing that supports insertion and deletion operations
without any extra NVM writes. Path hashing logically organizes the buckets in the hash table as
an inverted complete binary tree. Each bucket stores one item. Only the leaf nodes are address-
able by hash functions. When hash collisions occur in the leaf node of a path, all non-leaf nodes
in the same path are used to store the conflicting key-value items. Thus, insertions and deletions
in the path hashing only need to probe the nodes within two paths for finding an empty bucket
or the target item, without extra writes. However, path hashing reduces NVM writes at the cost
of reducing search performance due to the need of traversing two paths until finding the target
key-value item for a search operation.

Table 1 shows a high-level comprehensive comparison among these state-of-the-art memory-
efficient hashing schemes including BCH, PFHT, and path hashing. In summary, BCH is inefficient
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Table 1. Comparisons Among Level Hashing and State-of-the-art
Memory-efficient Hashing Schemes

BCH | PFHT | Path hashing | Level hashing
Memory Efficiency | +/ v v v
Search v - - vV
Deletion v - - Y
Insertion X - - v
Write-friendly X v Y v
Resizing X X X Y
Consistency X X X v

In this Table, “X” Indicates a Bad Performance, “\/” Indicates a Good Performance, and “~”
Indicates a Moderate Performance in the Corresponding Metrics.

for insertion operations due to frequent data evictions. PFHT and path hashing reduce NVM writes
in the insertion and deletion operations but at the cost of decreasing access performance. More
importantly, these hashing schemes overlook the efficiency of the resizing operation that often
causes a large number of NVM writes, and cannot directly work on persistent memory due to
no consistency guarantee. Our article proposes the level hashing that achieves good performance
in terms of all these metrics as presented in Section 3, which is also verified in the performance
evaluation as shown in Section 5.

2.2.3 Resizing a Hash Table. The resizing of hash table includes expanding and shrinking oper-
ations. When the load factor of a hash table reaches a high threshold or a new key-value item fails
to be inserted into the hash table, the hash table needs to be expanded by growing its size [46, 56].
Moreover, when the stored items in a hash table are far fewer than its storage units, the hash table
also needs to be shrunk via reducing its size. Traditional resizing schemes [38, 46, 52] perform
out-of-place resizing, which expand or shrink a hash table by creating a new hash table whose
size is larger than the old one for expanding or smaller than the old one for shrinking, and then
iteratively rehashing all key-value items from the old hash table to the new one.

To expand a hash table, the size of the new hash table is usually double size of the old one [38,
52, 53, 56] due to two main reasons. First, the initial size of a hash table is usually set to be a
power of 2, since it allows very cheap modulo operations. For a hash table with power-of-2 (i.e., 2")
buckets, computing the location of a key based on its hash value, i.e., hash (key) %2", is a simple bit
shift, which is much faster than computing an integral division, e.g., hash(key) %(2"-1). Thus, if
doubling the size to expand a hash table, the size of the new hash table is still a power of 2. Second,
the access performance of a hash table depends on the size of the hash table [56]. If expanding
the hash table to a too-small size, the new hash table may cause high hash collision rate and poor
insertion performance, which will quickly incur another expanding operation. If expanding the
hash table to a too-large size for inserting a few new items, the new hash table consumes too
much memory, reducing the memory space available for other applications. In general, doubling
the size when expanding a hash table has been widely recognized [52, 53, 56]. For example, in the
real-world applications, such as Java HashMap [27] and Memcached [40], doubling the size is the
default setting for expanding a hash table. For the similar reasons, to shrink a hash table, the size
of the new hash table is usually half size of the old one.

Resizing is an expensive operation that consumes O(N) time to complete, where N is the number
of buckets in the old hash table. Moreover, during the resizing, each search or deletion operation
needs to check both old and new hash tables, decreasing the access performance. For hashing index
structures maintained in persistent memory, resizing causes a large number of NVM writes with

ACM Transactions on Storage, Vol. 15, No. 2, Article 13. Publication date: June 2019.



A High-performance and Flexible-resizing Persistent Hashing Index Structure 13:7

yx bas/, One movement
0 N-4 N-3 N-2 N-1
TL:
BL:
~

~ P
-~ -~

One movement

-

(a) The logical structure

_______ s,
012 3 N-4 N-3N-2 Nef. o= et
TL: E‘E‘E- ...... .EHEI ~~ ; I: Sg;;
0 1 N2-2N2A T :‘._SOT"
.  — —]
oL B A bt

(b) The physical storage structure

Fig. 1. The hash table structure of level hashing with four slots per bucket. (In these tables, “TL” indicates the
top level, and “BL” indicates the bottom level.)

cache line flushes and memory fences, significantly hurting the NVM endurance and decreasing
the resizing performance.

3 THE LEVEL HASHING DESIGN

We propose level hashing, a write-optimized and high-performance hashing index scheme for
persistent memory with cost-efficient resizing and low-overhead consistency guarantee. In this
section, we first present the basic data structure of level hashing (Section 3.1), i.e., level hash ta-
ble, which is able to achieve write optimization, high load factor, and high performance. We then
present cost-efficient in-place expanding and shrinking schemes (Section 3.2) for the level hash ta-
ble to improve the resizing performance and reduce NVM writes during resizing. We then present
the (opportunistic) log-free schemes (Section 3.3) to guarantee the consistency of write operations
in level hashing with low overhead. We finally present the concurrent level hashing leveraging
fine-grained locking (Section 3.4).

3.1 Write-optimized Hash Table Structure

A level hash table is a new open-addressing structure with all the strengths of BCH, PFHT, and
path hashing, including write-optimized, memory-efficient, and high performance, while avoiding
their weaknesses by performing the following major design decisions.

—D1: Multiple Slots in Each Bucket. Motivated by the real-world key-value workload char-
acteristics that small key-value items dominate in current key-value stores reported by
Baidu [31] and Facebook [3], we set multiple slots in each bucket in the level hash table,
e.g., four slots in each bucket as shown in Figure 1. Thus, one bucket can store multiple
items each in one slot, which enables the level hash table to be cache-efficient. When one
bucket in the level hash table is accessed, multiple items stored in the same bucket can be
prefetched into CPU caches in one memory access, thus improving the cache efficiency and
reducing the number of memory accesses. Nevertheless, the current hash table has a very
low maximum load factor since hash collisions are not dealt with, as shown in Figure 2.
The following three decisions are used to improve the maximum load factor by efficiently
dealing with hash collisions.

—Dy: Using Two Different Hash Functions. Since each bucket contains k slots, the hash
table can only deal with at most k — 1 hash collisions occurring in a single bucket, causing
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Fig. 2. The maximum load factors when adding different design decisions. (The maximum load factor is de-
fined as the current load factor of the hash table when an insertion failure occurs. D1 : a one-level hash table with
four slots per bucket; D1 + Dy: a hash table with design decisions D1 and D2; D1 + D2 + D3: a hash table with
D1, D2, and Ds; All: level hash table that uses D1 + Dy + D3 + Dy.)

a low maximum load factor. To improve the maximum load factor, we use two different
hash functions for the level hash table, i.e., hash;() and hash,(), like BCH, PFHT, and
path hashing, which enables each key to have two hash locations. A new item is inserted
into the less-loaded bucket between the two hash locations [6]. Due to the randomization
of two independent hash functions, the maximum load factor of hash table is improved
significantly as shown in Figure 2.

—Ds: Sharing-based Two-level Structure. We divide the buckets in the level hash table into
two levels, i.e., a top level (TL) and a bottom level (BL), as shown in Figure 1(a). To insert a
new key-value item, the item is hashed into the buckets in the top level. The bottom level is
used to provide standby positions for the top level to deal with hash collisions. Each bucket
in the bottom level is shared by two buckets in the top level; thus, the size of the bottom
level is half of the top level. If there is no empty slot in the two top-level buckets for a
new key-value item, the item can be stored in its two corresponding standby buckets in
the bottom level. By using the two-level table structure, the maximum load factor of hash
table is significantly improved as shown in Figure 2. Moreover, since each top-level bucket
has one standby bucket, a search operation only needs to probe at most four buckets, thus
having the constant-scale worst-case time complexity.

—Dy4: At Most One Movement for Each Successful Insertion. We allow the movement of
at most one item for each insertion in the level hash table, which enables items to be evenly
distributed among buckets while avoiding the problem of the cascading writes in cuckoo
hashing. Specifically, during inserting a new key-value item (I¢.), if all the four buckets
in the two levels are full, we try to move away one key-value item in the four buckets. We
first check whether it is possible to move any existing key-value item in the two top-level
buckets from one location to its alternative top-level location. If no movement is possible, we
further check whether it is possible to move any existing key-value item in the two bottom-
level buckets from one location to its alternative bottom-level location. If the movement still
fails, the insertion is considered as a failure and the hash table needs to be expanded. Note
that the movement is saved if the alternative location of the moved item has no empty
slot. Allowing one movement redistributes the items among buckets, thus improving the
maximum load factor, as shown in Figure 2.

Put them all together, the structure of a level hash table is shown in Figure 1. Figure 1(a) shows
the logical structure of a level hash table containing two-level buckets. The links between two
levels indicate the sharing relationships among buckets, instead of pointers. Figure 1(b) shows the
physical storage structure of a level hash table, which stores each level in a one-dimensional array.
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Fig. 3. The in-place expanding in the level hashing. (“IL” indicates the interim level.)

For an item with the key K|, the locations of its two corresponding top-level buckets (i.e., the No.L4
and No.L;, buckets) and its two corresponding bottom-level buckets (i.e., the No.L,; and No.Lp,
buckets) can be obtained by the following equations:

Ltl = hashl(K)%N, Lt2 = haShz(K)%N (1)
Lp1 = hash;(K)%(N/2), Lp2 = hash,(K)%(N/2) (2)

The computations of Equations (1) and (2) only require the simple bit shift operation since N is a
power of 2.

3.2 Cost-efficient In-place Resizing

To improve the resizing performance and reduce NVM writes, we propose cost-efficient in-place
resizing for level hashing, which includes an in-place expanding scheme to grow the size of a hash
table and an in-place shrinking scheme to reduce the size of a hash table.

3.2.1 In-place Expanding. The basic idea of the in-place expanding scheme is to put a new level
on top of the old hash table and only rehash the items in the bottom level of the old hash table
when expanding a level hash table.

A high-level overview of the in-place expanding process is shown in Figure 3. Before the ex-
panding, the level hash table includes two levels, i.e., a top level (TL) with N buckets and a bottom
level (BL) with N /2 buckets, as shown in Figure 3(a). During the expanding, we first allocate the
memory space with 2N buckets as the new top level and put it on top of the old hash table. The
level hash table becomes a three-level structure during the expanding, as shown in Figure 3(b).
The third level is called the interim level (IL). The in-place expanding scheme rehashes the key-
value items stored in the IL into the top-two levels. Each rehashing operation includes reading a
key-value item in the IL, inserting the item into the top-two levels, and deleting the item from
the IL. After all items in the IL are rehashed into the top-two levels, the memory space of the
IL is reclaimed. After the expanding, the new hash table becomes a two-level structure again, as
shown in Figure 3(c). The rehashing failure, which indicates a rehashed item fails to be inserted
into the top-two levels, does not occur when the expanding is underway since, currently, the to-
tal number of stored items is smaller than half of the total size of the new level hash table, and
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the level hash table is able to achieve the load factor of higher than 0.9 (>0.5) as evaluated in
Section 5.2.1.

We observe that the new hash table with 3N buckets is exactly double size of the old one with
1.5N buckets, which meets the demand of real-world applications as discussed in Section 2.2.3.
Unlike the traditional out-of-place resizing scheme [46] in which the expanding occurs between
the old and new tables, the in-place expanding enables the whole expanding process to occur in
a single hash table. Thus, during expanding, search and deletion operations only need to probe
one table and compute the hash functions once, thus improving the access performance. More
importantly, the in-place expanding rehashes only the bottom level of the old hash table instead
of the entire table. The bottom level only contains 1/3(=0.5N/1.5N) of all buckets in the old hash
table, thus significantly reducing data movements and NVM writes during the expanding, as well
as improving the expanding performance. Moreover, during the resizing, our proposed in-place
resizing scheme requires less memory space than the traditional out-of-place resizing scheme. The
out-of-place resizing scheme requires 4.5N-bucket memory space including the old hash table with
1.5N buckets and the new hash table with 3N buckets. Our proposed in-place resizing scheme only
requires 3.5N-bucket memory space including the old hash table with 1.5N buckets and a new top
level with 2N buckets.

Improving the Maximum Load Factor after Expanding. In the level hash table, each item is
stored in the bottom level only when its corresponding two top-level buckets are full. Thus, before
expanding, the top-level buckets are mostly full and the bottom-level buckets are mostly non-full.
After expanding, the top level in the old hash table becomes the bottom level in the new hash table
as shown in Figure 3. Thus, the bottom-level buckets in the new hash table are mostly full, which
easily incur an insertion failure, reducing the maximum load factor. The blue line in Figure 4 shows
the load factors of the level hash table when the multiple successive expandings occur. We observe
that the maximum load factors in the 2nd, 4th, and 6th expandings are reduced, compared with
those in the 1st, 3rd, and 5th expandings. The reason is that the bottom-level buckets are mostly
full in the 2nd, 4th, and 6th expandings.

To address this problem, we propose a bottom-to-top movement (B2T) scheme for level hashing.
Specifically, during inserting an item, if its corresponding two top-level buckets (L;; and L;3) and
two bottom-level buckets (Ly; and Lpy) are full, the B2T scheme tries to move one existing item
(Iext) in the bottom-level bucket Ly; or Ly, into the top-level alternative locations of I.,;. Only
when the corresponding two top-level buckets of I.,; have no empty slot, the insertion is con-
sidered as a failure and incurs a hash table expanding. By performing the B2T scheme, the items
between top and bottom levels are redistributed, thus improving the maximum load factor. The
red line in Figure 4 shows the load factors when the expandings occur via using the B2T scheme.
We observe that the maximum load factors in the 2nd, 4th, and 6th expandings are improved.
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Fig. 5. Average search latency of the static and dynamic search schemes before and after expanding.

Improving the Search Performance after Expanding. After expanding the level hash table,
the search performance possibly decreases. The reason is that in the original search scheme (called
static search) as shown in Section 3.1, we always first probe the top level; if we do not find the
target item, we then probe the bottom level. Before expanding, about 2/3 items are in the top level.
However, the 2/3 items are in the bottom level after expanding, as shown in Figure 3. Hence, a
single search needs to probe two levels in most cases (i.e., about 2/3 probability) after expanding,
thus degrading the search performance.

To evaluate the static search performance in level hashing, we insert unique keys into a level
hash table and expand it when its load factor reaches 0.85, until the level hash table is expanded
four times. When the level hash table is in different load factors, we perform 1-million uniform
random search operations. The blue line in Figure 5 shows the average latency of the static search.
We observe the search latency of the static search sharply increases after each expanding since
most items are in the bottom level at this point.

To address this problem, we propose a dynamic search scheme for level hashing. Specifically, for
a search, we first compare the numbers of items stored in the top and bottom levels. If the key-
value items in the top level are less than those in the bottom level, we first search the bottom level
(based on Equation (2)); if we do not find the target item, we then search the top level (based on
Equation (1)). If the key-value items in the top level are more than those in the bottom level, we
first search the top level and then search the bottom level. Thus, after expanding, the key-value
items in the top level are less than those in the bottom level and, hence, we first search the bottom
level, thus improving the search performance. The red line in Figure 5 shows the average latency
of the dynamic search. We observe that the dynamic search scheme efficiently reduces the average
search latency in the level hash table after the first expanding.

3.2.2 In-place Shrinking. The basic idea of the in-place shrinking scheme is to put a new level
at the bottom of the old hash table and only rehash the items in the top level of the old hash table
when shrinking a level hash table.

A high-level overview of the in-place shrinking process for the level hash table is shown in
Figure 6. Before the shrinking, the level hash table includes two levels, i.e., a top level (TL) with 2N
buckets and a bottom level (BL) with N buckets, as shown in Figure 6(a). During the shrinking, we
first allocate the memory space with N/2 buckets as the new bottom level and put it at the bottom
of the old hash table. The level hash table becomes a three-level structure during the shrinking, as
shown in Figure 6(b). The first level is called the interim level (IL). The in-place shrinking scheme
rehashes the items in the IL into the bottom-two levels. Each rehashing operation includes reading
an item in the IL, inserting the item into the bottom-two levels, and deleting the item from the IL.
After all items in the IL are rehashed into the bottom-two levels, the memory space of the IL is
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reclaimed. After the shrinking, the new hash table becomes a two-level structure again, as shown
in Figure 6(c).

We observe that the new hash table with 1.5N buckets is exactly half the size of the old hash table
with 3N buckets, which meets the demand of real-world applications as presented in Section 2.2.3.
Unlike the traditional out-of-place resizing scheme [46] in which the shrinking occurs between
the old and new tables, the in-place shrinking enables the whole shrinking process to occur in a
single hash table. Moreover, the in-place shrinking rehashes only the top level of the old hash table
instead of the entire table. The top level only contains 2/3(=2N/3N) of all buckets in the old hash
table, thus significantly reducing data movements and NVM writes during the shrinking, as well
as improving the shrinking performance.

Moreover, a hash table needs to be shrunk only when it has very few key-value items. Therefore,
it does not occur that an item in the interim level fails to be rehashed into the bottom-two levels
during the shrinking.

3.3 Low-overhead Consistency Guarantee

In the open-addressing hash tables, a token associated with each slot is used to indicate whether
the slot is empty [17, 67]. As shown in Figure 7, in a bucket, the header area stores the tokens of
all slots and the remaining area stores the slots each with a key-value item. A token is a 1-bit flag
that indicates whether the corresponding slot is empty, e.g., “0” for the empty slot and “1” for the
non-empty slot. Since the size of the header area is always smaller than 8 bytes, modifying the
tokens only needs to perform an atomic write. But the size of a key-value item is usually larger
than 8 bytes. A straightforward method is to guarantee the crash consistency of writing key-value
items by using logging or CoW mechanisms, which, however, result in significant performance
overhead as discussed in Section 2.1.
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To reduce the overhead of guaranteeing consistency in level hashing, we propose log-free consis-
tency guarantee schemes for deletion, insertion, and resizing (shrinking and expanding) operations,
and an opportunistic log-free guarantee scheme for update operation, by leveraging the tokens that
can be modified in the atomic-write manner.

3.3.1 Log-free Deletion. When deleting a key-value item from a slot, we change the token of
the slot from “1” to “0”, which invalidates the deleted key-value item. The deletion operation only
needs to perform an atomic write to change the token. After the token of the slot is changed to
“0”, the slot becomes available and can be used to insert a new item.

3.3.2 Log-free Insertion. In the level hash table, the insertion operation includes two cases.

(1) No item movement: The insertion incurs no movement, i.e., inserting a new item to an
empty slot. In this case, we first write the new item into the slot and then change its token
from “0” to “1”. The ordering of writing the item and changing the token is ensured via
an MFENCE. Although the new item is larger than 8 bytes, writing the item does not need
logging or CoW, since the item becomes valid until the token is set to “1”. If a system
failure occurs during writing the item, this item may be partially written but invalid since
the current token is “0” and this slot is still available. Hence, the level hash table is in a
consistent state when system failures occur.

(2) Moving one item: The insertion incurs the movement of one existing item. In this case,
we need to take two steps to insert an item, and the ordering of executing the two steps
is ensured via an MFENCE. The first step is to move an existing item into its alternative
bucket. We use slotcyr to indicate the current slot of the existing item and use slotg;¢
to indicate its new slot in the alternative bucket. Moving this item first copies the item
into slotait, then modifies the token of slota1t from “0” to “17, and finally modifies the
token of slote, from “1° to “0’. If a system failure occurs after changing the token of
slot,;¢ before changing the token of slotcr, the hash table contains two duplicate key-
value items, which, however, does not impact on the data consistency. It is because when
searching this key-value item, the returned value is always correct whichever one of the
two items is queried. When updating this item, one of the two items is first deleted and
the other one is then updated, as presented in Section 3.3.4. After moving this existing
item, the second step inserts the new item into the empty slot using the method of “(1) No
item movement.”

3.3.3 Log-free Expanding and Shrinking. During expanding a level hash table, we need to rehash
all key-value items in the interim level (i.e., the old bottom level) into the top-two levels, as shown
in Figure 3. During shrinking a level hash table, we need to rehash all key-value items in the interim
level (i.e., the old top level) into the bottom-two levels, as shown in Figure 6. For expanding and
shrinking, the steps of rehashing each key-value item are the same, as presented in the following.

For a rehashed item, we use slotyq to indicate its old slot in the interim level and use slotpey
to indicate its new slot in the top-two (bottom-two) levels for expanding (shrinking). Rehashing
an item in the interim level can be decomposed into two steps, i.e., inserting the item into slotpey
(Log-free Insertion) and then deleting the item from sloteq (Log-free Deletion). To guarantee the
data consistency during a rehashing operation, we first copy the key-value item of slot,14 into
slotney, and then modify the token of slotpe, from “0” to “1” and finally modify the token of
sloteiq from “1” to “0”. The ordering of the three steps is ensured via MFENCEs. If a system failure
occurs when copying the item, the hash table is in a consistent state since the slotpe, is still
available and the item in slotgq is not deleted. If a system failure occurs after changing the token
of slotpey before changing the token of sloteiq, Slotpey is inserted successfully but the item in
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Fig. 8. The opportunistic log-free update scheme. ((a) The log-free update scheme; (b) The probability of per-
forming log-free updates with the increase of load factor and the change of the number of slots/bucket.)

sloteyq is not deleted. There are two duplicate items in the hash table, which, however, does not
impact the data consistency, since we can easily remove one of the two duplicates via the following
recovery scheme.

Recovery: Since only the first item (Ifs;) to be rehashed in the interim level may be inconsistent
in case of a system failure, we only need to check whether there are two duplicates of If, in the
hash table. During the recovery, we query the key of I4; in the top-two (bottom-two) levels if
the hash table is being expanded (shrunk) when the system failure occurs. If two duplicates exist,
we directly delete Ig,;. Otherwise, we rehash it. Therefore, the hash table can be recovered in a
consistent state. We distinguish whether the hash table is being expanded or shrunk when the
system failure occurs via a variable, i.e., resize_state, recorded in the persistent metadata of the
hash table. That the value of resize_state is “0” means the level hash table is not during resizing;
a value of “1” means the level hash table is being expanded, and a value of “2” means the level hash
table is being shrunk.

3.3.4 Opportunistic Log-free Update. When updating an existing key-value item, if the updated
item has two copies in the level hash table, we first delete one and then update the other. If we
directly update the item in place, the hash table may be left in the corrupted state when a system
failure occurs, since the old item is overwritten and lost, and the new item is not written completely.
Intuitively, we address this problem by first writing the new or old item into a log and then updating
the old item in place, which, however, causes high performance overhead.

To reduce the overhead, we leverage an opportunistic log-free update scheme to guarantee con-
sistency. Specifically, for an update operation (e.g., updating KV, to KV;’), we first check whether
there is an empty slot in the bucket storing the old item (KV;).

—Yes. If there is an empty slot in the bucket storing the old item (KV;) as shown in Figure 8(a),
we directly write the new item (KV;’) into the empty slot, and then modify the tokens of
the old item (KV;) and new item (KV;’) simultaneously. The two tokens are stored together
and, hence, can be simultaneously modified in an atomic write. The ordering of writing the
new item and modifying the tokens is ensured by an MFENCE.

—No. If there is no empty bucket in the bucket storing the old item (KV;), we first write the
old item in a log and then update the old item in place. If a system failure occurs during
overwriting the old item, the old item can be recovered based on the log.

In summary, if an empty slot exists in the bucket storing the item to be updated, we update the
item without logging. We evaluate the probability that the bucket storing the item to be updated
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Fig. 9. An insertion operation in the cuckoo hashing. (The sequence of x — a — b — @ is a cuckoo path. To
perform log-free insertion in cuckoo hashing, we first move b from L7 to L10, and then move a from L4 to L7,
and finally insert x into L4.).

includes at least one empty slot, as shown in Figure 8(b). The probability is related with the number
of slots per bucket and the load factor of the hash table. We observe when the load factor of the
hash table is smaller than about 2/3, the probability of log-free update is very high and decreases
with the increase of the load factor and the decrease of the number of slots per bucket. However,
when the load factor is larger than 2/3, the probability increases with the increase of the load factor.
This is because the number of storage units in the top level is 2/3 of the total storage units. When
the load factor is beyond 2/3, more items are inserted into the bottom level, and the bottom-level
buckets have the higher probability to include an empty slot than the top-level buckets.

We further discuss whether the proposed consistency-guarantee schemes work on other hash-
ing schemes. (1) The proposed log-free deletion scheme can be used in other open-addressing
hashing schemes, since deletion only operates on a single key-value item. (2) The opportunistic
log-free update scheme can be used in other multiple-slot hashing schemes, e.g, BCH and PFHT.
(3) Obviously, the log-free insertion scheme can be used in the hashing schemes without data
evictions during insertions, e.g., path hashing, and the hashing schemes with at most one eviction,
e.g., PFHT. In fact, the log-free insertion scheme can also be used in the hashing schemes with
iterative eviction operations during insertions, e.g., cuckoo hashing. Specifically, an insertion op-
eration in cuckoo hashing may iteratively evict key-value items until finding an empty location.
The sequence of evicted items is called a cuckoo path [34]. To perform log-free insertion, we first
search for a cuckoo path with an empty location but do not execute evictions during search. We
then perform evictions starting with the last item in the cuckoo path and working backward to-
ward the first item. For example, as shown in Figure 9, the new item x is inserted into the location
L4, and the sequence of x — a — b — O is a cuckoo path. To perform log-free insertion, we first
move b from L7 to L10, and then move a from L4 to L7, and finally insert x into L4.

3.4 Concurrent Level Hashing

As current systems are being scaled to a larger number of cores and threads, concurrent data struc-
tures become increasingly important [7, 17, 34, 39]. Since having no cascading writes and not using
pointers, level hashing is able to efficiently support multi-reader and multi-writer concurrency via
simply using fine-grained locking.

In the concurrent level hashing, the conflicts occur when different threads concurrently read
or write the same slot. Hence, we allocate a fine-grained locking for each slot. When reading or
writing a slot, the thread first locks it. Since level hashing allows each insertion to move at most
one existing item, an insertion operation locks at most two slots, i.e., the current slot and the
target slot that the item will be moved into. Nevertheless, the probability that an insertion incurs
a movement is very low as presented in Section 3.1. An insertion locks only one slot in the most
cases; hence, the concurrent level hashing delivers high performance as evaluated in Section 5.2.8.

4 IMPLEMENTATION DETAILS

In this section, we present the implementation details of search, insertion, deletion, update, and
resizing operations in the level hashing on persistent memory.

ACM Transactions on Storage, Vol. 15, No. 2, Article 13. Publication date: June 2019.



13:16 P. Zuo et al.

ALGORITHM 1: Search (key)

//Compare the number of items in the top and bottom levels
if |TL| > |BL
//Compute two hash locations in the top level
t1 = hashq (key)%N // N is the size of the TL
ta = hash,(key)%N
//Lookup the key in the top level
for each slot in TL[ty] and TL[t>]
if slot.key == key & slot.token ==
return slot.value
//Compute hash locations in the bottom level
b1 = t1%(N/2) // N/2 is the size of the BL
bz = t2%(N/2>
//Lookup the key in the bottom level
for each slot in BL[b7] and BL[b;]
if slot.key == key & slot.token ==
return slot.value

else
//Compute hash locations in the bottom level
b1 = t1%(N/2) // N/2 is the size of the BL
b2 = t2%(N/2>
//Lookup the key in the bottom level
for each slot in BL[by] and BL[b>]
if slot.key == key & slot.token ==
return slot.value
//Compute two hash locations in the top level
t1 = hashj (key)%N // N is the size of the TL
t, = hash,(key)%N
//Lookup the key in the top level
for each slot in TL[t;] and TL[t;]
if slot.key == key & slot.token ==
return slot.value
return NULL

4.1 Search

Algorithm 1 presents the pseudo-code of the dynamic search operation in the level hashing. To
search a key, we first compare the number of items stored in the top and bottom levels.

If the items in the top level are more than those in the bottom level, we first probe the top level,
as presented in Section 3.2.1. The two hash locations of the key in the top level are computed by
using two different hash functions, i.e., hash; () and hash, (). This algorithm lookups the key in
the two buckets in the top level. If finding the item with the key, the algorithm returns its value.
Otherwise, the two hash locations in the bottom level are computed according to Equation (2). The
key is further searched in the two buckets in the bottom level. If finding the item with the key, the
algorithm returns its value. If not being found in the bottom level, the key does not exist in the hash
table.

If the items in the top level are not more than those in the bottom level, the algorithm first
searches the bottom level, and if it does not find the target item, the algorithm then searches the
top level.

4.2 Deletion

Algorithm 2 presents the pseudo-code of the deletion operation in the level hashing. To delete an
item, we first find the slot storing the target key via the function Search’(). The implementation
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of Search’() is similar to Search() in Algorithm 1 while it returns a slot pointer instead of a
value. If Search’() returns NULL, the target key does not exist in the hash table. Otherwise, the
returned slot contains the item with the target key. The algorithm deletes the item by modifying
its token from “1” to “0” via an atomic write, as described in Section 3.3.1.

ALGORITHM 2: Delete (key)

//Search the slot containing the target key
slot = Search’(key)
//If not find the target key, return FALSE
if slot == NULL
return FALSE
else
//0therwise, delete the target item via an atomic write
slot.token = @
clflush(slot.token)
mfence()
return TRUE

4.3 Insertion

Algorithm 3 presents the pseudo-code of the insertion operation in the level hashing. To insert a
new item with <key, value>, the two hash locations of the key in the top level are computed
by using two different hash functions, i.e., hash; () and hash, (). If finding any empty slots in the
two top-level buckets, this algorithm inserts the new key-value item into the less-loaded bucket. To
insert the new item, the <key, value> pair is first copied into an empty slot and then the token
of the empty slot is set to “1” for guaranteeing crash consistency as presented in Section 3.3.2. The
order of the two-step writes is ensured by an MFENCE instruction.

If there is no empty slot in the two top-level buckets, the two hash locations of the key in the
bottom level are computed. The algorithm further probes the empty slot in the two bottom-level
buckets. If an empty slot is found, the new <key, value> pair is inserted into it.

If there is still no empty slot in the two bottom-level buckets, the algorithm checks whether
it is possible to move any key-value item in the four buckets (including two top-level and two
bottom-level buckets) from its current bucket to its alternative buckets, by using the TryMove-
ment() function, as presented in Section 3.1. If the movement fails, the hash table needs to be
expanded.

4.4 Update

Algorithm 4 presents the pseudo-code of the update operation in the level hashing. The algorithm
first searches the slot storing the target key via the function Search’(). If Search’() returns NULL,
the target key does not exist in the hash table. Otherwise, the returned slot contains the item with
the target key-value item. To update this item, the algorithm checks if an empty slot exists in this
bucket including the target key-value item. If yes, we can perform log-free updates as presented in
Section 3.3.4. The algorithm directly writes the new item into the empty slot, and then modifies the
tokens of the old and new items simultaneously. The two tokens are stored together and, hence,
can be simultaneously modified in an atomic write. The ordering of writing the new item and
modifying the tokens is ensured by an MFENCE.

If there is no empty slot in this bucket containing the target key-value item, the algorithm first
writes the old key-value item into the log and then updates the key-value item in place.
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ALGORITHM 3: Insert (key, value)

//Compute two hash locations in the top level
t1 = hashy(key)%N // N is the size of the TL
t, = hash;,(key)%N
//If there are any empty slots in the two top-level buckets
if !I(|TLLty]] == |TLLt>]| == ASSOC_NUM) //ASSOC_NUM: the number of slots in each bucket
//Compare the number of items in the two buckets, and insert the new item into
//the less-loaded bucket
if  |TLCt(]] > |TLLt2]]
for each slot in TL[t;]
if slot.token ==
slot.<key, value> = <key. value>
clflush(slot.<key, value>)
mfence()
slot.token = 1
clflush(slot.token)
mfence()
return TRUE
else
for each slot in TL[tq]
if slot.token ==
slot.<key, value> = <key. value>
clflush(slot.<key, value>)
mfence()
slot.token = 1
clflush(slot.token)
mfence()
return TRUE
//Compute two hash locations in the bottom level
b1 = hashy (key)%(N/2)
b, = hash;(key)%(N/2)
if 1(|BL[t;]| == |BL[t,]| == ASSOC_NUM)
if |BL[by]| > [BLLt2]]
for each slot in BL[b,]
if slot.token ==
slot.<key, value> = <key. value>
clflush(slot.<key, value>)
mfence()
slot.token = 1
clflush(slot.token)
mfence()
return TRUE
else
for each slot in BL[b1]
if slot.token ==
slot.<key, value> = <key. value>
clflush(slot.<key, value>)
mfence()
slot.token = 1
clflush(slot.token)
mfence()
return TRUE
//1f there are no empty slots in the four buckets, move away an existing item
return TryMovement(key, value)
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ALGORITHM 4: Update (key, value)

//Search the slot containing the target key
bucket->slot = Search’(key)
//If not find, the update fails
if bucket->slot == NULL
return FALSE
//Check if an empty slot exists in this bucket
for each slot in this bucket
//1f true, perform log-free update
if slot.token ==
slot.<key, value> = <key. value>
clflush(slot.<key, value>)
mfence()
slot.token = 1
bucket->slot.token = @
clflush(slot.token)
mfence()
return TRUE
//No empty slot in this bucket
//Log the old item
Log(bucket->slot)
mfence ()
//Update the target item in place
bucket->slot.value = value
clflush(bucket->slot.value)
mfence ()
return TRUE

4.5 Resizing

Algorithm 5 presents the pseudo-code of the expanding operation in the level hashing. When
a level hash table is being expanded, the old bottom level is called the interim level (IL). To
rehash each key-value item in the non-empty slot (slot1q) in the interim level, the algorithm
first searches the key in the top-two levels for finding an empty slot (slotye,) via the function
SearchT2Levels(). The implementation of the SearchT2Levels() function is similar to Algo-
rithm 1, which returns a slot pointer that points to an empty slot. Algorithm 5 copies the item
from sloty1q into slotpe, and then atomically modifies the token of slotpe, from “0” to “1”.

ALGORITHM 5: Expand ()

//Rehash each item in the interim level, i.e., the old bottom level
for each sloteg with <key, value> in IL
//Search an empty slot in the top-two levels
slotpew = SearchT2Levels(key)
//Copy the key-value
slotnew.<key, value> = slotgyiq.<key, value>
clflush(slotpey.<key, value>)
mfence()
slotpey.token = 1
clflush(slotney . token)
mfence()
//Delete the item from the old slot
slotyiq.token = @
clflush(slotyq. token)
mfence ()
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Finally, it atomically modifies the token of slote14 from “1” to “0”. The MFENCE instruction is used
to ensure the ordering of the three steps.

Algorithm 6 presents the pseudo-code of the shrinking operation in the level hashing. When a
level hash table is being shrunk, the old top level is called the interim level (IL). To rehash each key-
value item in the non-empty slot (slotg14) in the interim level, the algorithm first searches the key
in the bottom-two levels for finding an empty slot (slotney,) via the function SearchB2Levels().
The following steps of copying each item are the same as those in Algorithm 5.

ALGORITHM 6: Shrink ()

//Rehash each item in the interim level, i.e., the old top level
for each slotyig with <key, value> in IL
//Search an empty slot in the bottom-two levels
slotnew = SearchB2Levels(key)
//Copy the key-value
slotney.<key, value> = slotgyiq.<key, value>
clflush(slotpey.<key, value>)
mfence()
slotpey.token = 1
clflush(slotpey.token)
mfence ()
//Delete the item from the old slot
slotylq.token = @
clflush(slotyiq.token)
mfence()

5 PERFORMANCE EVALUATION
5.1 Experimental Setup

All our experiments are performed on a Linux server with the kernel version 3.10.0 that has four
6-core Intel Xeon E5-2620 2.0GHz CPUs (each core with 32KB L1 instruction cache, 32KB L1 data
cache, and 256KB L2 cache), 15MB last level cache, and 32GB DRAM.

To evaluate the performance of level hashing on persistent memory, we conduct our experi-
ments using Hewlett Packard’s Quartz [44, 58], which is a DRAM-based performance emulator
for persistent memory. Quartz emulates the latency of persistent memory by injecting software
created delays per epoch and limiting the DRAM bandwidth by using DRAM thermal control reg-
isters. However, the current implementation of Quartz [44] does not yet support the emulation of
write latency in persistent memory. We, hence, emulate the write latency by adding an extra delay
after each CLFLUSH, like existing work [28, 32, 37, 51, 59].

The experimental results in PFHT [14] and path hashing [67] demonstrated that PFHT and path
hashing significantly outperform other existing hashing schemes, including chained hashing, lin-
ear probing [47], hopscotch hashing [22], and cuckoo hashing [45, 54], in NVM. Therefore, we
compare our proposed level hashing with the state-of-the-art NVM-friendly schemes, i.e., PFHT
and path hashing, and the memory-efficient hashing scheme for DRAM, i.e., BCH, in both DRAM
and NVM platforms. Due to the lack of the source code of PFHT, we faithfully implement the pro-
posed idea and main components of PFHT based on the descriptions in their paper [14], and use the
open-source code [21] of path hashing for comparisons. Since these hashing schemes do not con-
sider the data consistency issue on persistent memory, we implement the persistent BCH, PFHT,
and path hashing using our proposed consistency guarantee schemes as presented in Section 3.3
for fair comparisons. Moreover, we also compare the performance of these hashing schemes in
DRAM without the need of crash consistency guarantee.
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Fig. 10. Maximum load factors of hash tables. (# in the NAME-# indicates the number of slots per bucket.)

Since 16-byte key has been widely used in current key-value stores [3, 31, 61], we use the key
with the size of 16 bytes and the value whose size is no longer than 15 bytes. Two slots align a
cache line (64 bytes) via padding several unused bytes. Every hash table is sized for 100 million
key-value items and thus needs about 3.2GB memory space. Besides examining the single-thread
performance of each kind of operation, we also use YCSB [13], a benchmark for key-value stores,
to evaluate the performance of level hashing in multiple mixed workloads and the concurrent
performance of the concurrent level hashing. In the following experimental results, each data value
is the average of 10-run results.

5.2 Experimental Results

5.2.1 Maximum Load Factor. The maximum load factor is an important metric for hash tables
due to directly affecting the number of items that a hash table can store and the hardware cost [17,
34]. To evaluate the maximum load factor, we insert unique string keys into empty BCH, PFHT,
path, and level hash tables until an insertion failure occurs. Specifically, BCH reaches the maximum
load factor when a single insertion operation fails to find an empty slot after 500 evictions [17, 34].
For PFHT, the 3% space of the total hash table size is used as a stash, following the configuration
in the original paper [14]. PFHT reaches the maximum load factor when the stash is full. Level and
path hash tables reach the maximum load factors when a single insertion fails to find an empty
slot or bucket.

Figure 10 shows that all the four hash tables can achieve over 90% of maximum load factor.
Figure 10 also compares different hash tables with the different numbers of slots in each bucket.
More slots in each bucket incur higher maximum load factor for BCH, PFHT and level hash table.
For the same number of slots in each bucket, PFHT and level hash table have approximately the
same maximum load factor, which are higher than BCH. Path hash table is a one-item-per-bucket
table and achieves up to 94.2% maximum load factor.

In the following experiments, we set four slots per bucket for BCH, PFHT and level hashing,
like the existing work [5, 14, 17].

5.2.2 Insertion Latency. To evaluate the insertion latency of different hashing schemes, we
insert unique key-value items to empty BCH, PFHT, path, and level hash tables until reaching
their maximum load factors. In the meantime, we measure the average latency of each inser-
tion operation when hash tables are in different load factors. We evaluate these hashing schemes
on both DRAM and the persistent memory with different read/write latencies, i.e., 200ns/200ns,
200ns/600ns, and 200ns/1000ns. On persistent memory, these hash tables are implemented with
data consistency guarantee.

Figure 11(a) shows the average latency of each insertion operation in different hash tables in
DRAM. Figure 11(b)-(d) show the average insertion latency of different hash tables in persistent
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Fig. 11. Insertion latency of different hashing schemes in DRAM and NVM with different read/write
latencies.

memory. Compared with the experimental results in Figure 11(a) and (b), we observe that the
insertion latency in persistent memory is much higher than that in DRAM, while the read/write
latency of persistent memory (200ns) is close to that of DRAM (136ns). The main reason is that
each inserted item must be flushed into persistent memory via CLFLUSH, and the ordering of writes
is ensured via MFENCE for consistency guarantee, significantly increasing the latency.

As shown in Figure 11, we observe that when the load factor is smaller than 0.6, the hash colli-
sion ratio is low. BCH, PFHT, and level hashing have the similar insertion latency, which is lower
than path hashing. The reason is that path hashing needs to probe multiple-level buckets to find
an empty location. When the load factor is higher than 0.6, the hash collision ratio significantly
increases. Level hashing achieves the lowest insertion latency due to only probing at most two
buckets in the bottom level when hash collisions occur in the top level. The insertion latency of
BCH increases sharply, due to incurring many evictions to deal with hash collisions. The insertion
performance of BCH becomes worse in persistent memory, since the eviction operations in BCH
also incur many cache line flushes and memory fences. When the load factor is high, the insertion
latency of PFHT increases since many items are inserted in the stash. PFHT uses the chained hash
table to manage the key-value items in the stash. An insertion in the stash needs to allocate the
node space and revise pointers, resulting in extra writes. The insertion latency of path hashing
is higher than that of PFHT in DRAM as shown in Figure 11(a), while becoming lower than that
of PFHT in persistent memory as shown in Figure 11(b) for a high load factor (e.g., >0.7). This
is because path hashing performs only multiple read operations to find an empty bucket for in-
serting an item without extra write operations. Reads are much cheaper than writes in persistent
memory. In both DRAM and persistent memory, level hashing has the best insertion performance.
From Figure 11(b), we observe when the load factor is larger than 0.8, level hashing reduces the
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insertion latency by over 67%, 43%, and 30%, i.e., speeding up the insertions by over 3.0x, 1.8x%,
and 1.4X, compared with BCH, PFHT and path hashing.

5.2.3 Update Latency. We investigate the update latency of different hash tables with different
load factors in persistent memory. The read/write latency of NVM is 200ns/600ns. As shown in
Figure 12, we observe that the update latencies of BCH, PFHT, and path hashing are similar since
the update only operates on a single key-value item. In a low load factor (e.g., <0.5), their update
latency is significantly higher than their insertion latency as shown in Figure 11(c), since each
update operation needs to use the expensive logging to guarantee consistency.

To show the efficiency of our proposed opportunistic log-free update scheme as presented in
Section 3.3.4, we also evaluate the update latency of Level w/o Opp, which indicates the level hash-
ing without this opportunistic scheme. Compared with BCH, PFHT, path hashing, and Level w/o
Opp, we observe that level hashing efficiently reduces the update latency by 15%—52%, i.e., speed-
ing up the updates by 1.2 x —2.1x.

5.2.4  Search Latency. We evaluate the performance of both positive and negative searches in
different hash tables on the persistent memory. For a search operation, if the target item is found in
the hash table, the query is positive. Otherwise, it is negative. When hash tables are in two typical
load factors, i.e., 0.6 and 0.8 [67], we perform 1 million positive and negative searches, respectively,
and measure their average latency, as shown in Figure 13.

We observe that a higher load factor results in a higher search latency for each hash table.
Among these hash tables, BCH has the lowest positive search latency due to probing the fewest
positions to find a target item. The positive search latency of level hashing is very close to that
of BCH since level hashing probes at most two buckets in the bottom level when failing to find
the target item in the top level. PFHT has a higher positive search latency than BCH and level
hashing, due to linearly searching the stash when failing to find the target item in the main hash
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Fig. 15. The expanding and shrinking time of different hashing schemes in DRAM and NVM.

table. The chains in the stash become long when the load factor is high, e.g., 0.8. Path hashing
has the highest search latency due to probing multi-level buckets. Moreover, the negative search
has higher search latency than the positive search for each hash table, since the negative search
must traverse all positions where the target item may be stored. Level hashing probes at most
four buckets for each search operation, which has the constant worst-case search time complexity
like BCH. Nevertheless, PFHT uses chained hashing to manage the items in the stash with the
O(N;) worst-case search time complexity [29], where Nj is the number of items in the stash. The
path hash table has about log(N2)/2 levels, thus producing the O(log(N2)) worst-case search time
complexity, where N, is the total number of buckets.

5.2.5 Deletion Latency. We investigate the deletion latency of different hash tables in DRAM
and persistent memory, as shown in Figure 14. In DRAM, we observe that the deletion latency
of each hash table is approximate to its search latency since the deletion operation first searches
the position storing the target item and then sets the position to null. The set-null operation has
very low latency in DRAM due to being completed in CPU caches. But in persistent memory, the
set-null operation causes high latency since the modified data have to be flushed into NVM for
consistency guarantee. Like the positive search performance, BCH and level hashing have better
deletion performance than PFHT and path hashing.

5.2.6 Expanding and Shrinking Time. We investigate the expanding and shrinking performance
of different hashing schemes. To evaluate the expanding performance, we expand the hash tables
when their load factors reach the same threshold, i.e., 0.85 (the maximum load factor that the 4-slot
BCH can achieve as shown in Figure 10). We measure the total time that different hashing schemes
complete the expanding. In order to show the benefit of our proposed in-place expanding scheme,
we also evaluate the expanding performance of Level-Trad, which indicates the level hashing using
the traditional resizing scheme [46], as shown in Figure 15(a).
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Fig. 16. Execution time of YCSB workloads using different hashing schemes in DRAM and NVM.

We observe that the level hashing reduces the total expanding time by about 76%, i.e., speeding
up the expanding by 4.3%, compared with Level-Trad. The reason is that the level hashing by
using the in-place expanding scheme only needs to rehash the key-value items in the bottom
level, significantly reducing the number of rehashed items. The number of buckets in the bottom
level is 1/3 of all buckets. An item is stored in the bottom level only when both buckets in the top
level are full. Hence, the items in the bottom level to be rehashed are always less than 1/3 of all
items in the level hash table. Moreover, BCH, PFHT, path hashing, and Level-Trad have the similar
expanding time, since they need to rehash all items from the old hash table to the new one.

To evaluate the shrinking performance, we first insert key-value items into different hash ta-
bles until their load factors reach 0.85, and then randomly delete items until their load factors
reach 0.3. At this time, we shrink these hash tables and measure the total time that different
hashing schemes complete the shrinking. The shrinking time of different hash tables is shown in
Figure 15(b). In order to show the benefit of our proposed in-place shrinking scheme, we also eval-
uate the shrinking performance of Level-Trad that indicates the level hashing using the traditional
resizing scheme [46].

We observe that the level hashing reduces the total shrinking time by over 31%, i.e., speeding up
the shrinking by 1.4%, compared with BCH, PFHT, path hashing, and Level-Trad. The reason is that
the level hashing by using the in-place shrinking scheme does not need to rehash the key-value
items in the bottom level, thus reducing the number of rehashed items.

5.2.7 Index Performance in the Mixed Workloads. We use YCSB [13] to generate five mixed
workloads. Each workload includes a total of 10 million search/insertion requests following the
default Zipfian distribution of YCSB. Figure 16 shows the total execution time of different hash
tables when executing each of the YCSB mixed workloads in the DRAM and persistent memory.

The total execution time of each hashing scheme increases with the growth of the percentage
of the insertion operation due to its increase in the load factor of hash tables and producing higher
latency than the search operation, especially in the persistent memory. The execution time of
BCH sharply increases with the increase of the insertion ratio, since its insertion latency is much
higher than other hashing schemes. PFHT and path hashing have less execution time than BCH in
persistent memory, due to causing fewer writes for insertions. Among the four hashing schemes,
level hashing has the least execution time under all experimental conditions due to its advantages
of efficient insertion and search performance. In most write-intensive workloads (search/insertion:
10%/90%), the level hashing achieves over 2.7X, 1.7X, and 1.5X speedups, respectively, compared
with BCH, PFHT, and path hashing.

ACM Transactions on Storage, Vol. 15, No. 2, Article 13. Publication date: June 2019.



13:26 P. Zuo et al.

ELibcu-2[ JLevel-2 5 Libcu-4 [ ]Level-4
B= Libcu-8 [ Level-8 [l Libcu-16 [l Level-16

-
©

-
[6)]
T

N
N
!

Throughput (M regs/s)

o w o ©

90/10 70/30 50/50 30/70 10/90
Search/Insertion Ratio (%)

Fig. 17. The concurrent throughputs of level hashing and libcuckoo with 2/4/8/16 threads in DRAM.

5.2.8 Concurrent Throughput. Since PFHT and path hashing do not support the concurrent
access, we compare the concurrent level hashing with the state-of-the-art concurrent hash table
in DRAM, i.e., libcuckoo [34, 35]. We focus on general hashing schemes without special hardware
support, and, hence, use the libcuckoo with fine-grained locking instead of that with hardware
transaction memory (HTM). We vary the number of concurrent threads from 2 to 16 and use the
YCSB workloads with different search/insertion ratios. The experimental results are shown in
Figure 17.

We observe that the concurrent level hashing has 1.6 X —2.1x higher throughput than libcuckoo
in all workloads. This is because libcuckoo incurs iterative eviction operations during an insertion.
Thus, an insertion needs to lock an entire cuckoo path [34], i.e., locking all slots in the eviction
sequence. As a result, all insertion and search operations in other threads that access any one slot
in the locked cuckoo path have to wait until the current insertion completes, thus reducing the
concurrent performance. Unlike libcuckoo, in the concurrent level hashing, most insertions lock
only one slot and a few insertions lock at most two slots, reducing the concurrent conflictions and
thus delivering high performance.

6 RELATED WORK

In this section, we discuss the related studies on index structures for NVM and concurrent hashing
index structures.

Tree-based Index Structures on NVM. For tree-based index structures, most existing works
focus on B-tree [23]. Chen et al. [8] propose a PCM-friendly B*-tree that reduces PCM writes by
allowing leaf nodes to be unsorted without considering the data consistency of B*-tree in PCM.
Venkataraman et al. [57] propose the CDDS B-tree that leverages versioning and CLFLUSH and
MFENCE instructions to guarantee data consistency in B-tree. Yang et al. [63] propose the NV-Tree
to guarantee the data consistency of only leaf nodes in B*-tree while relaxing that of internal
nodes. The internal nodes can be rebuilt based on leaf nodes on system failures. NV-Tree reduces
the number of cache line flushes by only persisting the leaf nodes. Chen et al. [9] propose a write-
atomic B-tree (wWB*-Tree) that adds a bitmap in each node of B*-tree and guarantees consistency
via the atomic update of the bitmap. However, wB*-Tree requires expensive redo logging for node
split operations. Oukid et al. [43] propose the FP-tree, a persistent B-Tree for hybrid DRAM-NVM
main memory, in which only the leaf nodes of B*-tree are persisted in NVM while the internal
nodes are stored in DRAM. Hwang et al. [23] propose the log-free failure-atomic shift (FAST)
and in-place rebalance (FAIR) algorithms for B*-tree in persistent memory by tolerating transient
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inconsistency. Except B-tree, Lee et al. [32] focus on the radix tree on persistent memory and
propose Write Optimal Radix Trees (WORT) that guarantee data consistency by 8-byte atomic
writes. Unlike them, our article focuses on the hashing-based index structure on NVM.

Hashing-based Index Structures on NVM. Existing work on hashing-based index structures
for NVM, such as PFHT [14] and path hashing [67, 68], mainly focuses on reducing NVM writes
without considering the consistency issue on NVM. Unlike them, our proposed level hashing guar-
antees the consistency of hash table via (opportunistic) log-free schemes without expensive log-
ging and CoW mechanisms in most cases, while delivering high performance and rarely incurring
extra NVM writes. Moreover, we observe that the resizing in hash tables is expensive for the en-
durance and performance of NVM systems, which, however, is overlooked by existing work. Our
article proposes a cost-efficient in-place resizing scheme to significantly reduce the NVM writes
and alleviate performance penalty during resizing.

Concurrent Hashing Index Structures. MemC3 [17] proposes an optimistic concurrent
cuckoo hashing that is optimized for the multi-reader and single-writer concurrency by using
a global lock and version counters. The Intel Threading Building Blocks (TBB) [25] provides a
chaining-based concurrent hash table using per-bucket fine-grained locking. Libcuckoo [34] is a
multi-reader and multi-writer concurrent cuckoo hashing scheme using fine-grained locking that
delivers higher performance than the TBB hash table. Our proposed concurrent level hashing has
higher concurrent throughput than libcuckoo due to locking fewer slots for insertions. To support
variable-length keys and values, MemC3 [17] stores a short summary of the key and a pointer for
each key-value item in the hash table. This pointer points to the full key-value term that is stored
outside the hash table. The same method can be added into level hashing as needed to support
variable-length keys and values.

7 CONCLUSION

To efficiently index the data on persistent memory, this article proposes a write-optimized and
high-performance hashing index scheme called level hashing, along with a cost-efficient in-place
resizing scheme and (opportunistic) log-free consistency guarantee schemes. Level hashing effi-
ciently supports multi-reader and multi-writer concurrency via simply using fine-grained locking.
We have evaluated level hashing in both DRAM and NVM platforms. Compared with the state-of-
the-art hashing schemes, level hashing speeds up insertions by 1.4xX—3.0%, updates by 1.2Xx—2.1X,
expanding by over 4.3%, and shrinking by over 1.4x, while maintaining high search and deletion
performance. Compared with the start-of-the-art concurrent hashing scheme, the concurrent level
hashing improves the throughput by 1.6 X —2.1x.
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