
11

RACE: One-sided RDMA-conscious Extendible Hashing

PENGFEI ZUO, Huawei Cloud, China

QIHUI ZHOU, The Chinese University of Hong Kong, China

JIAZHAO SUN, LIU YANG, and SHUANGWU ZHANG, Huawei Cloud, China

YU HUA, Huazhong University of Science and Technology, China

JAMES CHENG, The Chinese University of Hong Kong, China

RONGFENG HE and HUABING YAN, Huawei, China

Memory disaggregation is a promising technique in datacenters with the benefit of improving resource utiliza-

tion, failure isolation, and elasticity. Hashing indexes have been widely used to provide fast lookup services

in distributed memory systems. However, traditional hashing indexes become inefficient for disaggregated

memory, since the computing power in the memory pool is too weak to execute complex index requests. To

provide efficient indexing services in disaggregated memory scenarios, this article proposes RACE hashing,

a one-sided RDMA-Conscious Extendible hashing index with lock-free remote concurrency control and ef-

ficient remote resizing. RACE hashing enables all index operations to be efficiently executed by using only

one-sided RDMA verbs without involving any compute resource in the memory pool. To support remote

concurrent access with high performance, RACE hashing leverages a lock-free remote concurrency control

scheme to enable different clients to concurrently operate the same hashing index in the memory pool in a

lock-free manner. To resize the hash table with low overheads, RACE hashing leverages an extendible remote

resizing scheme to reduce extra RDMA accesses caused by extendible resizing and allow concurrent request

execution during resizing. Extensive experimental results demonstrate that RACE hashing outperforms state-

of-the-art distributed in-memory hashing indexes by 1.4–13.7× in YCSB hybrid workloads.

CCS Concepts: • Information systems→ Distributed storage; Data structures;

Additional Key Words and Phrases: Disaggregated data center, remote direct memory access, hashing index

structure

ACM Reference format:

Pengfei Zuo, Qihui Zhou, Jiazhao Sun, Liu Yang, Shuangwu Zhang, Yu Hua, James Cheng, Rongfeng He,

and Huabing Yan. 2022. RACE: One-sided RDMA-conscious Extendible Hashing. ACM Trans. Storage 18, 2,

Article 11 (April 2022), 29 pages.

https://doi.org/10.1145/3511895

Pengfei Zuo and Qihui Zhou contributed equally to this research.

The preliminary version appears in the Proceedings of the USENIX Annual Technical Conference (USENIX ATC’21) as

“One-sided RDMA-Conscious Extendible Hashing for Disaggregated Memory”.

Authors’ addresses: P. Zuo (corresponding author), J. Sun, L. Yang, S. Zhang, and R. He, Huawei Cloud, Shenzhen,

Guangdong, China; emails: pfzuo.cs@gmail.com, sunjiazhao@huawei.com, yangliu100@huawei.com, zhangshuangwu@

huawei.com, herongfeng@huawei.com; Q. Zhou and J. Cheng, The Chinese University of Hong Kong, Hong Kong,

China; emails: qhzhou@cse.cuhk.edu.hk, jcheng@cse.cuhk.edu.hk; Y. Hua, Huazhong University of Science and Technol-

ogy, Wuhan, Hubei, China; email: csyhua@hust.edu.cn; H. Yan, Huawei, Chengdu, Sichuan, China; email: yanhuabing@

huawei.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1553-3077/2022/04-ART11 $15.00

https://doi.org/10.1145/3511895

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.

https://orcid.org/0000-0001-9982-5130
https://doi.org/10.1145/3511895
mailto:permissions@acm.org
https://doi.org/10.1145/3511895


11:2 P. Zuo et al.

1 INTRODUCTION

Memory disaggregation, which has attracted extensive attentions from both industry, e.g., HP’s
The Machine [22] and Intel RSD [23], and academia [6, 17, 19, 30, 31, 40], decouples the traditional
monolithic compute and memory resources in datacenters and forms independent compute and
memory resource pools. Due to resource pooling and independent hardware deployments, disag-
gregated memory enjoys the benefits of improvements on resource utilization, failure isolation,
and elasticity [5, 44]. In the disaggregated memory architecture, compute blades run applications
with only a small amount of memory as cache. In contrast, the memory pool stores application
data with weak computing power. Due to not involving the compute resources in the memory
pool, fast one-sided RDMA networks generally serve for data accesses from the compute blades to
the memory pool.

Distributed in-memory hashing indexes have become one of the fundamental building blocks
in many datacenter applications, such as databases [25, 29, 47] and key-value stores [2, 3, 27].
With the increasing popularity of RDMA in modern datacenters, RDMA-search-friendly (RSF)

hashing indexes have been intensively studied, e.g., FaRM hopscotch hashing [14], Pilaf cuckoo
hashing [33], and DrTM cluster hashing [46]. These RSF indexes execute search requests by using
one-sided RDMA READs to fetch data from remote memory without involving remote CPUs. In
contrast, insertion, deletion, and update (IDU) requests are sent to the remote CPUs, which
locally execute them. However, this mechanism fails to work in the new disaggregated memory
architecture, since the computing power in the memory pool is too weak to execute the aforesaid
complex IDU requests. In fact, in these RSF hashing indexes, IDU requests can be executed in the
compute blades by using one-sided RDMA WRITE and ATOMIC verbs to operate on remote data.
However, we observe that executing IDU requests using one-sided RDMA verbs in existing RSF
hashing indexes incurs significant performance degradation, due to a large number of network
round-trips and concurrent access conflicts. In a nutshell, it is non-trivial to design an efficient
hashing index for disaggregated memory due to the following challenges:
• Many remote reads&writes for handling hash collisions. To handle hash collisions, existing

hashing schemes incur significant data movement overheads to make room for newly inserted
items, e.g., hopscotch hashing [21] and cuckoo hashing [38]. These data movements are executed
by many remote reads and writes in the disaggregated memory, which significantly decrease the
performance of hashing indexes, since each remote read or write produces one RDMA network
round-trip.
• Concurrency control for remote access. To handle conflicts of concurrent accesses, lock-based

techniques have been widely used in hashing indexes [16, 28]. Locks have low overhead for local
hashing indexes, due to nanosecond-level latency for local execution. However, when using locks
for hashing indexes in disaggregated memory scenarios, remote locking has to be implemented
using RDMA ATOMIC verbs with microsecond-level latency, thus incurring high overheads and
increasing the waiting delay when lock contention occurs. Especially for the hashing indexes with
excessive data movement, multiple locks are acquired before moving data, which exacerbates the
lock contention.
• Tricky remote resizing of hash tables. When a hash table is full, resizing is inevitable for increas-

ing its size. Conventional full-table resizing needs to move all key-value items from an old hash
table to a new one. Extendible resizing [15, 35] reduces the number of moved items during resizing,
at the cost of one extra RDMA READ due to the need of first accessing the directory of the hash
table. Moreover, during resizing, it is challenging to concurrently access the hash table.

To address the above challenges, we propose RDMA-Conscious Extendible (RACE) hash-
ing, to the best of our knowledge, the first hashing index designed for disaggregated memory

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



RACE: One-sided RDMA-conscious Extendible Hashing 11:3

that fully relies on one-sided RDMA verbs to efficiently execute all index requests. To reduce the
performance influence of resizing, RACE hashing leverages the extendible resizing, and hence a
RACE hash table consists of multiple subtables and a directory that is used to index subtables.
The subtable structure is designed to be one-sided RDMA-conscious (RAC), achieving that all
index requests (including search, insertion, deletion, and update) can be executed using only one-
sided RDMA verbs while having a constant-scale time complexity in the worst case and therefore
delivering high performance. To improve the performance of remote concurrency, RACE hash-
ing leverages a lock-free remote concurrency control scheme for the RAC hash subtable, which
achieves that all index requests except failed insertions are concurrently executed in a lock-free
manner. Moreover, to reduce the performance penalty from extendible resizing, RACE hashing
caches the directory at the client side (a client is a CPU blade) and therefore eliminates the RDMA
access to the directory. Nevertheless, since the directory in the client cache becomes stale when the
hash table is resized, accessing the hash table via a stale directory cache may obtain incorrect or
inconsistent results. RACE hashing presents a simple yet efficient stale-read scheme to guarantee
the correctness of accessed data and allow current request execution during resizing.

Specifically, this article makes the following contributions:
• One-sided RDMA-conscious table structure. We present a RAC subtable structure that is both

RDMA-search-friendly and RDMA-IDU-friendly. All index requests are executed by using only
one-sided RDMA verbs with constant worst-case time complexity. IDU requests do not cause any
extra data movement.
• Lock-free remote concurrency control. We design lock-free remote concurrent algorithms for

RACE hashing to enable all requests except failed insertions to be concurrently executed without
locking.
• Extendible remote resizing. We present a stale-read client directory cache scheme to reduce

one extra RDMA READ for remote directory lookups and guarantee request execution correctness
when using the stale directory cache. We also achieve concurrent access to the subtable that is
being resized.
• Implementation and evaluation. We have implemented the RACE hashing and evaluated its

performance. Extensive experimental results demonstrate that RACE hashing outperforms state-
of-the-art distributed in-memory hashing indexes by up to 13.7× in YCSB [11] hybrid workloads.

2 BACKGROUND AND MOTIVATION

2.1 Disaggregated Memory

In a general disaggregated memory architecture in datacenters [6, 19, 30, 31, 44], different types
of resources are separated into pools, e.g., a compute pool and a memory pool, as shown in
Figure 1. Each pool is managed and scaled independently as well as failure isolated. The com-
pute pool consists of many CPU blades, each of which retains a small amount of memory as the
local cache for the memory pool. The memory pool includes many memory blades that can be
DRAM or persistent memory DIMMs, RNICs, and controllers (the RNIC and controller can be the
same entity). The RNIC and controller have low-power processing units used only for intercon-
nection. The communication between compute and memory pools leverages fast remote-access
interconnect techniques, such as one-sided RDMA, Omni-path [8], or Gen-Z [1]. The interfaces
that the memory pool provides for the compute pool include READ, WRITE, ALLOC, and FREE for
variable-size memory blocks, as well as ATOMIC operations, e.g., compare-and-swap (CAS) and
fetch-and-add. We assume ALLOC and FREE interfaces are implemented in the RNICs or controllers
of the memory pool [1, 44]. Without loss of generality, the rest of this article considers using

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



11:4 P. Zuo et al.

Fig. 1. Architecture for disaggregated memory.

one-sided RDMA for the interconnect in the disaggregated memory architecture, i.e., compute
blades access the memory pool using RDMA READ, WRITE, and ATOMIC verbs.

2.2 RDMA-search-friendly Hashing Index

In this subsection, we first present existing RSF hashing indexes and then analyze their perfor-
mance on disaggregated memory.

2.2.1 Existing Hashing Schemes. With the wide use of RDMA in modern datacenters, RSF hash-
ing indexes have been intensively studied [14, 33, 46]. All these RSF hashing indexes are designed
for the datacenter architecture with monolithic servers. Clients execute search requests by using
RDMA READs to fetch data from remote memory without involving remote CPUs. In contrast, IDU
requests are sent to the remote servers and executed using the remote CPUs. We review each of
these hashing indexes in detail as follows.

Pilaf Cuckoo Hashing: Pilaf [33] proposes a three-way cuckoo hashing that uses three orthog-
onal hash functions to compute three different hash buckets for each key. When executing a key
Search, the client first reads one of its three corresponding hash buckets using an RDMA READ. If
the key does not exist in the first bucket, then the client then reads the second hash bucket. Upon
not finding the key in the second bucket, the client reads the third hash bucket. For Insertion
requests, the client sends them to the server and the server CPUs handle them locally. An insertion
may iteratively evict existing key-value items in the cuckoo hash table to their alternate locations.
This mechanism incurs an inconsistency problem in which a search request executed by the client
may miss the key when the server is handling its eviction. To address this problem, the server
first calculates all affected buckets (called a cuckoo path [28]) before moving keys. The server then
moves each key to its alternate location starting from the last affected bucket in the cuckoo path.

FaRM Hopscotch Hashing: FaRM [14] proposes a chained associative hopscotch hashing in
which each bucket has a neighborhood that includes the bucket itself and its following bucket. Each
bucket has multiple slots and each key is stored in the neighborhood of the bucket that the key is
hashed to. For an Insertion that is also handled at the server side, the hopscotch hashing tries to
find an empty slot in the neighborhood of the key’s hash bucket. If found, then the empty slot stores
the item. Otherwise, the hopscotch hashing continues to find an empty slot forward by executing
a linear probe. If finding an empty slot, then the hopscotch hashing tries to iteratively displace
items to move the empty slot toward the neighborhood. If there is no empty slot or the movement
fails, then the hopscotch hashing stores the item in the bucket list linked to the key’s hash bucket.
When executing a Search, the client reads the neighborhood of the key’s hash bucket, i.e., two
adjacent buckets, using an RDMA READ. Upon not finding the key, the client further traverses the
linked buckets. Note that traversing each bucket needs an RDMA READ.

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



RACE: One-sided RDMA-conscious Extendible Hashing 11:5

DrTM Cluster Hashing: Cluster hashing proposed in DrTM [46] is a chained hashing with
associativity, in which reading and writing key-value items use RDMA READs and WRITEs and
insertions and deletions to the hash table are shipped to the server for local execution. To insert
a new key, the cluster hashing tries to find an empty slot in the key’s hash bucket and the bucket
list linked to the key’s hash bucket. If there is no empty slot, then the cluster hashing adds a new
bucket in the bucket list to store the inserted key-value item. For a Search request, the client reads
the key’s hash bucket using an RDMA READ. Upon not finding the key, the client further traverses
the linked buckets one by one.

2.2.2 Performance on Disaggregated Memory. To the best of our knowledge, there is no existing
hashing index specifically designed for disaggregated memory. As a first step, we analyze the
performance of using the above RSF hashing indexes in disaggregated memory. Due to the absence
of computing power in the memory pool to execute their IDU requests, we consider implementing
the IDU requests with one-sided RDMA verbs.

For Pilaf cuckoo hashing [33], to insert a key-value item, the client needs to execute eviction
operations when the hash table is in a high load factor. Specifically, based on the state-of-the-art
concurrent cuckoo hashing algorithm [28], the client first calculates a cuckoo path and locks all
buckets in the path using RDMA CASes. The client then uses RDMA WRITEs to iteratively evict
key-value items in the cuckoo path. A cuckoo path may include tens or hundreds of buckets [16].
Thus an insertion is executed by using a large number of RDMA CASes and WRITEs, delivering
poor insertion performance and also decreasing the performance of other search requests due to
the use of a large number of locks.

For FaRM hopscotch hashing [14], to insert a key-value item, the client needs to linearly probe
buckets in the hash table using RDMA READs until finding an empty slot. When the hash table is in
a high load factor, inserting a key may need to read the entire hash table to the client until finding
an empty slot. After finding an empty slot, moving the empty slot toward the neighborhood of
the inserted key is also complex and expensive, due to locking multiple buckets in the movement
path and using multiple RDMA WRITEs to move items. Moreover, if there is no empty slot or the
movement fails, then the operation of adding linked buckets is also expensive.

For DrTM cluster hashing [46], to insert a key-value item, the client needs to traverse buckets
in its corresponding bucket list one by one until finding an empty slot. Traversing each bucket
needs an RDMA READ. If there is an empty slot in these buckets, then the client inserts the item
using an RDMA WRITE. Otherwise, the client adds a new overflow bucket to the bucket list. Be-
fore modifying the bucket list, the client needs to lock the bucket list to prevent other clients
from inserting duplicate keys or freeing buckets. Thus an insertion executes operations including
traversing the bucket list, locking/unlocking, allocating memory for a new bucket and the new
item, linking the new bucket, and writing the new item, resulting in many RDMA READs, WRITEs,
and CASes. The operations of allocating overflow buckets in the cluster hashing are more frequent
than in FaRM hopscotch hashing, since the cluster hashing has a weaker ability to deal with hash
collisions in the main hash table. Moreover, the deletion requests are also complex in the structure
of linked bucket lists, due to the need of moving items from buckets at the list tail toward ones
at the list head to fill empty slots and recycling tail buckets for higher performance and space
utilization [14].

In summary, these RDMA-search-friendly hashing indexes become RDMA-IDU-unfriendly for
disaggregated memory, since IDU requests incur a large number of RDMA operations to deal with
hash collisions and concurrency control. Our article proposes RACE hashing that is both RDMA-

search-friendly and RDMA-IDU-friendly while efficiently dealing with hash collisions and concur-
rency control as presented in Section 3. The performance is also verified in Section 5.

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



11:6 P. Zuo et al.

Fig. 2. A hash table with extendible resizing.

2.3 Resizing Hash Tables

When a hash table is full, i.e., an insertion failure occurs or its load factor reaches a threshold, the
hash table needs to be resized by expanding its capacity. In general, there are two kinds of resizing
mechanisms including full-table resizing and extendible resizing [15, 35].

To expand a hash table, the full-table resizing mechanism allocates a new hash table whose size
is larger than the old one, e.g., double the size, and then iteratively moves each key-value item from
the old hash table to the new one. The full-table resizing is expensive due to moving all items.

In the extendible resizing, a resizing operation only needs to move partial items. Specifically, the
hash table using extendible resizing includes multiple subtables, and there is a directory to index
these subtables as shown in Figure 2(a). For a 64-bit hash value, M bits are used by the directory
to locate a subtable (we use the last M bits as an example, i.e., suffix) and the remaining (64 −M)
bits are used to locate target buckets within the subtable. The number of suffix bits currently
used by the directory is called global depth (GD) (GD ≤ M). Thus the directory has 2GD entries
that correspond to at most 2GD subtables. Each subtable has a local depth (LD) (LD ≤ GD) that
indicates the number of suffix bits used by the subtable.

When a subtable is full, we split the subtable into two by adding a new subtable. As shown in
Figure 2(a) and (b), when the subtable with the suffix “1” is full, it is split into Subtables “01” and “11.”
The resizing mechanism moves the key with suffix “11” from Subtable “01” to Subtable “11” and
changes their LDs to 2. When a subtable is full and its LD is equal to theGD, we grow the directory
by doubling its size, as shown in Figure 2(b) and (c). The full subtable is split into two ones. Except
for the directory entry that the added new subtable corresponds to, other new directory entries
point to their corresponding original subtables. After resizing the directory, search requests use the
new GD to locate their corresponding subtables. In summary, by performing extendible resizing,
when a subtable is full, we only need to resize this single subtable without affecting key-value
items in other subtables.Therefore, RACE hashing uses the extendible resizing.

Nevertheless, there are two challenges when using extendible resizing in disaggregated mem-
ory. First, compared with the full-table resizing, the extendible resizing incurs one extra memory
access for each search request, due to the need of first querying the directory to obtain the address
of the target subtable before accessing the subtable. One extra memory access has little impact
on the performance of a local hash table, due to fast local memory access. However, in the disag-
gregated memory, the one extra memory access produces one more RDMA round-trip, significantly
decreasing the search performance. Second, as there is no powerful compute resource in the dis-
aggregated memory to execute the complex resizing, the resizing has to be triggered and executed
by a remote client, i.e., a CPU blade, which is different from the traditional resizing mechanism
that is always executed by local CPUs. When a client is performing the resizing, other clients do
not know about its occurrence. Therefore, we have to deal with concurrent access to the hash table

during resizing.

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



RACE: One-sided RDMA-conscious Extendible Hashing 11:7

Fig. 3. The overall architecture of RACE hashing in disaggregated memory. The entire RACE hash table is

stored in the memory pool. Clients in the compute pool store the directory of the hash table in their local

caches and access subtables only using one-sided RDMA verbs.

3 RACE HASHING

3.1 Overview

Figure 3 shows the overall architecture of RACE hashing for disaggregated memory. The RACE
hash table is stored in the memory pool. Clients in the compute pool operate the hash table using
one-sided RDMA verbs. To alleviate the performance influence of resizing, RACE hashing lever-
ages the extendible resizing and hence the hash table consists of multiple subtables and a directory.
To reduce the extra RDMA READ for accessing the remote directory, RACE hashing leverages a di-
rectory cache1 in the client. Each client maintains a local cache to store only the directory of the
RACE hash table. Thus a client can access the directory using a local memory access rather than
a remote RDMA READ, and use RDMA verbs to access only the subtable. We present the design of
an RAC hash subtable structure in Section 3.2, i.e., the RAC hash subtable, in which all index re-
quests are executed by using only one-sided RDMA verbs while having constant worst-case time
complexity. We then present a lock-free remote concurrency control scheme in Section 3.3 for the
RAC hash subtable, achieving that index requests including search, insertion, deletion, and update
are concurrently executed in a lock-free way. Moreover, caching the directory in clients causes
data inconsistency issues between the directories in the memory pool and client caches. There-
fore, we finally present a client directory cache with stale reads scheme in Section 3.4 to address the
inconsistency issue at low overhead.

3.2 The RAC Hash Subtable Structure

In disaggregated memory scenarios, the challenge of designing a RAC hash subtable structure
stems from minimizing the number of remote RDMA operations for IDU requests while keep-
ing high memory efficiency and Search performance. To achieve this goal, we design the RAC
hash subtable that does not allow any movement operations, evictions, or bucket chaining to han-
dle hash collisions, since these operations incur a large number of remote writes as presented in
Section 2.2. Instead, the RAC hash subtable uses three major design choices, including associativity,
two choices, and overflow colocation, for addressing hash collisions and thus achieves a constant
worst-case time complexity for all index requests.

1The memory overhead of the cache is small, since the directory generally has at most hundreds of entries and each entry

has only several bytes.

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



11:8 P. Zuo et al.

Fig. 4. The RAC hash subtable structure (four-way associativity as an example).

D1: Associativity. With associativity, each bucket has multiple slots, being capable of storing
multiple key-value items. K-way associativity means that each bucket has K slots. Associativity
is friendly for one-sided RDMA operations, since multiple items within one bucket can be read
together in one RDMA READ. Figure 4 shows a RAC hash subtable with four-way associativity.

D2: Two Choices. Based on the theory of “the power of two choices” [34], enabling each key to
have two choices for its storage location can achieve a good load balance among buckets, effectively
handling hash collisions. Hence, the RAC subtable uses two independent hash functions, h1 () and
h2 (), to compute two hash locations for each key, as shown in Figure 4. By efficiently combining
associativity with two choices, the RAC subtable inserts a new item into the less-loaded bucket
between its two hash locations. As shown in Figure 5, when both associativity and the technique
of two choices are applied, the maximum load factor of RACE hash table is significantly improved.
Note that, according to Mitzenmacher’s observations [34], two choices achieve exponential im-
provements over one choice for the efficiency of load balancing, while three choices only have
a constant factor improvement than two choices. In disaggregated memory, three choices incur
one more bucket access (i.e., one more RDMA READ) than two choices. Therefore, unlike Pilaf [33],
which uses three choices, we use two choices in our design.

D3: Overflow Colocation. The overflow sharing technique [48] enables an overflow bucket (or
called standby bucket) to be shared by the other two main buckets to store conflicting items for
better load balancing, which can further improve the load factor of RACE hash table as shown by
D1+D2+D3 in Figure 5. However, overflow buckets are discrete from their main buckets [48], incur-
ring extra bucket accesses, which performs worse for disaggregated memory, due to extra RDMA
READs. To address this problem, we propose an overflow colocation scheme to store the overflow
buckets adjoining with their main buckets. As shown in Figure 4, three continuous buckets are
considered as a group, in which the first and last buckets are main buckets that can be addressable
by the hash functions. The middle bucket is an overflow bucket that cannot be addressable by the
hash functions and is shared by the first and last buckets to store their conflicting items. By doing
so, one RDMA READ can fetch one main bucket and its overflow bucket together, thus reducing the
number of RDMA READs.

Putting it all together, the structure of a RAC hash table is shown in Figure 4. A RAC hash
subtable is a one-dimensional bucket array stored in a continuous memory space. Each bucket is
K-way associative and a bucket group includes three continuous buckets, i.e., two main buckets
and a shared overflow bucket. The combination of a main bucket and its overflow bucket is called a

combined bucket. For each key, we compute two hash locations that are respectively in two different
bucket groups. The structure of the RAC hash subtable is simple yet efficient for disaggregated
memory, having the following strengths:

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



RACE: One-sided RDMA-conscious Extendible Hashing 11:9

Fig. 5. The maximum load factors with different design choices. The maximum load factor is defined as the

current load factor of the hash table when an insertion failure occurs. D1: RACE hash table with seven slots

per bucket; D2: RACE hash table with Two Choices; D1 + D2: RACE hash table with D1 and D2; All: RACE

hash table with D1, D2, and D3.

• RDMA-IDU friendly: As each key only involves two combined buckets, IDU requests only need

to operate within the two combined buckets without moving/evicting items from/to other buckets
or linking new buckets, having constant worst-case time complexity while being RDMA-friendly.
• RDMA-search friendly: A search request only issues two RDMA READs, each of which fetches

one combined bucket. More importantly, the two RDMA READs can be issued in parallel to reduce
the request latency, unlike cluster hashing [46] in which issuing the next RDMA READ has to wait
for the return of the previous one to traverse the linked buckets. Moreover, by using doorbell
batching [24] that is an RDMA-optimized technique to read multiple disjoint memory regions
within one RDMA round-trip time (RTT), we package the two RDMA READ operations into one.
Therefore, the search latency in the RAC subtable is one RTT rather than two ones.
• High memory efficiency: By combining associativity, two choices, and overflow colocation, the

RAC hash subtable enables items to be more evenly distributed among buckets and thus efficiently
handles hash collisions to achieve a good load balance. It hence achieves a high load factor of up
to 90% (with seven-way associativity) as evaluated in Section 5.2.1.

3.3 Lock-free Remote Concurrency Control

Lock-based techniques have been widely used in existing hashing indexes within a single machine
for concurrency control [16, 28]. Nevertheless, for disaggregated memory, all requests are executed
by using one-sided RDMA verbs, which results in non-trivial challenges for handling concurrent
access conflicts. This is because remote locking implemented by using microsecond-level-latency
RDMA CAS incurs much higher overheads, compared with nanosecond-level-latency local locking,
and each locking or unlocking operation requires an RDMA round-trip. To deliver high concur-
rent performance, we propose a lock-free remote concurrency control scheme for RACE hashing
that achieves that all index requests, except failed insertions, become lock-free. A failed insertion
triggers a subtable resizing and needs to acquire the resizing lock as presented in Section 3.4.2.

Bucket Structure. In RACE hashing, to support variable-length keys and values, full key-value
items are stored outside the hash table like existing hashing indexes [10, 33, 46]. The pointers
to full key-value items are stored inside the hash table. The structure of each bucket in the RAC
hash subtable is shown in Figure 6. A bucket consists of a header and multiple slots. The header
is used for hash table resizing and will be introduced in Section 3.4.1. Each slot corresponds to a

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



11:10 P. Zuo et al.

Fig. 6. The structure of a bucket. (Fp: The fingerprint of the key, which is a 8-bit hash of the key. Len: The

length of the key-value block in the slot.)

key-value item. To support lock-free remote concurrent access, a slot is 8 B, i.e., the maximum size
of an RDMA CAS, and composed of a fingerprint (8 bits), a key-value length (8 bits), and a pointer
(48 bits). A fingerprint is the 8-bit hash of a key. Based on the analysis of existing work [16],
an 8-bit fingerprint is enough to achieve a very low false positive (a false positive means that
different keys in a bucket have the same fingerprint). Moreover, before reading a full key-value
item using an RDMA READ, we need to know the size of the item. Therefore, we store the length
of the key-value block in the slot. The length is 8-bit and the length unit is 64 B.2 Thus the length
of a key-value block is always multiple of 64 B and the maximum length of a key-value block is
28 ∗64 B = 16 KB, which covers most application scenarios for current key-value stores, since small
key-values dominate in them [7]. When a key-value item is larger than 16 KB, which in fact rarely
occurs, we store the remaining item content beyond 16 KB in the second key-value block and link
the second block to the first one. The respective lengths of the key and value (i.e., Klen and Vlen )
are stored in the head of the key-value block. The pointer in a slot consumes 48 bits like the
x86_64 system [10, 36, 45]. A null pointer means the slot is empty. Based on the bucket structure,
we present lock-free search/insertion/deletion/update operations below.

Lock-free Insertion. To insert a key-value item, the client uses doorbell batching [24] to read
two combined buckets that the key corresponds to. At the same time, the client writes the key-
value block3 in the memory pool. Therefore, reading buckets and writing the key-value block are
executed in parallel, as shown in Figure 7(b). Once receiving two combined buckets, the client first
chooses the less-loaded one. The client then looks for an empty slot in the order of main buckets
first and overflow buckets second, as presented in Section 3.2. If an empty slot is found, then the
client uses an RDMA CAS to write the pointer of the key-value block into it. Otherwise, the hash
table resizing is triggered, as presented in Section 3.4.

In rare cases, clients may concurrently insert duplicate keys into the hash table, since RDMA
ATOMIC verbs only ensure the 8-B atomicity. For example, Client 1 and Client 2 try to insert the
same key K . As each key corresponds to two combined buckets in RACE hashing, it may occur
that Client 1 selects one empty slot in Combined Bucket 0 to insert K , and Client 2 selects one
empty slot in Combined Bucket 1 to insert K . In this case, two duplicate keys K exist in the hash
table. To address the issue of duplicate keys, after writing the pointer in a bucket for an insertion,
the client re-reads the two combined buckets to check duplicate keys, as shown in Figure 7(b). On
finding duplicate keys, the client only keeps one valid key and removes the remaining duplicate
keys. Different clients have to determine the same key-value item as the valid key when finding
duplicate keys to guarantee the consistency of a concurrent access. To guarantee this, we hence
make an agreement in the algorithm to determine the only valid key for different clients. For

2The length unit can be changed as needed.
3The memory of the key-value block can be pre-allocated to reduce the latency of memory allocation in the critical path

of insertion, the detail of which is shown in Section 4.2.

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



RACE: One-sided RDMA-conscious Extendible Hashing 11:11

ALGORITHM 1: Insert (key, value)

// 1st RTT: Using RDMA doorbell batching to fetch two combined buckets
// and write the new key-value pair asynchronously
suffix = ExtractSuffix(key, directory.globalDepth)
subtable = directory.subtable[suffix]
index1 = Hash1(key)
index2 = Hash2(key)
bucket1, bucket2 = RdmaRead(subtable[index1], subtable[index2])
remoteAddress = AllocBlock()
RdmaWrite(key, value, remoteAddress)
// If the subtable is being resized, restart the insertion
if (subtable.localDepth != bucket1.localDepth || subtable.localDepth != bucket2.localDepth)

Synchronize(directory)
restart

bucket = FindLessLoadBucket(bucket1, bucket2)
slot = FindEmptySlot(bucket)
// If no empty slot is found, the hash table resizing is triggered
if (slot == NULL)

Resize()
restart

// 2nd RTT: Using RDMA CAS to write the pointer of the key-value block
entry.fingerprint = key.fingerprint
entry.pointer = remoteAddress
if (RdmaCas(slot, entry) != SUCCESS)

restart
// 3rd RTT: Re-reading two combined buckets to remove duplicate keys
bucket1, bucket2 = RdmaRead(subtable[index1], subtable[index2])
RemoveDuplicate(bucket1, bucket2, key)
// If the cache is stale, remove the key-value pair and restart the insertion
if (IsBucketCorrect(subtable, bucket, key) == false)

RemoveKey(key, slot)
Synchronize(directory)
restart

return SUCCESS

example, within the two combined buckets, the agreement considers the key stored in the slot with
the minimal bucket number and the minimal slot number to be the only valid one. The pseudo-code
of the lock-free insertion operation is shown in Algorithm 1.

Lock-free Deletion. To delete a key-value item, the client first executes a search to find the target
key. If the target key is found, then the client sets its corresponding slot to be null by using an
RDMA CAS, as shown in Figure 7(c). Once the RDMA CAS is done successfully, the deletion request
is returned. The client then sets the key-value block to full-zero and frees the key-value block in
background. The zero-setting operation can be avoided if the RNIC can automatically set the freed
memory to full-zero for data security, i.e., avoiding the old data to be observed by other clients.
The pseudo-code of the lock-free deletion operation is shown in Algorithm 2. In rare cases, a client
may find duplicate keys during a deletion, which is caused by an on-going insertion. In this case,
the client deletes all duplicate keys.

Lock-free Update. To update a key-value item, the client searches the target key. At the same
time, the client writes the new key-value item into the memory pool, as shown in Figure 7(d). Once
finding the target key exists, the client uses an RDMA CAS to change the content of the slot to point

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



11:12 P. Zuo et al.

Fig. 7. The main workflows of lock-free search, insertion, deletion, and update. The blue lines mean accessing

the hash table, and the red lines mean accessing the key-value blocks. The solid lines mean RDMA READ

round-trips, and the dotted lines mean RDMA WRITE/ATOMIC round-trips.

ALGORITHM 2: Delete (key)

// 1st + 2nd RTT: Searching for the subtable, bucket and slot that contains the key
// The implementation of the function Search'() is similar to the function Search()
// while it returns a subtable, a bucket, and a slot instead of a value
subtable, bucket, slot = Search'(key)
// If the cache is stale, restart the deletion
if (IsBucketCorrect(subtable, bucket, key) == false)

restart
if (slot != NULL)

// 3rd RTT: Setting the key-value block to full zero
// and freeing the key-value block asynchronously in the background
if (RdmaCas(slot, NULL) == SUCCESS)

Reset(slot.pointer)
Free(slot.pointer)

else
restart

return SUCCESS

to the new key-value item. If the RDMA CAS is executed successfully, then the update request is
returned. The client finally frees the old key-value block in background. The pseudo-code of the
lock-free update operation is shown in Algorithm 3.

Lock-free Search. As shown in Figure 7(a), to search a key, the client reads its corresponding two
combined buckets. If the fingerprint matches one of the slots, then the client reads the key-value
block that the slot points to. The client then compares the full key stored in the key-value block.
If the full key matches, then the value is returned.

Since all modifications on buckets are atomic and update requests do not modify the old key-
value item in place, the only inconsistency case for a search is that the key-value block is freed
or re-allocated before a search request reads the key-value block (after obtaining the pointer of
the key-value). However, this inconsistency case can be easily observed by comparing the length
and content of the key stored in the block with those of the search key. This is because once
the key-value block is freed/re-allocated, its content is full-zero/changed, rendering the compari-
son mismatched. Nevertheless, there still exists a special case that another client re-allocates the
key-value block and issues an RDMA WRITE to write the same key, key length, and value length

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



RACE: One-sided RDMA-conscious Extendible Hashing 11:13

ALGORITHM 3: Update (key, value)

// 1st + 2nd RTT: Writing the new key-value block and searching for the subtable, bucket and slot
// that contains the key at the same time
remoteAddress = AllocBlock()
RdmaWrite(key, value, remoteAddress)
subtable, bucket, slot = Search'(key)
// If the cache is stale, restart the update
if (IsBucketCorrect(subtable, bucket, key) == false)

restart
if (slot != NULL)

entry.fingerprint = key.fingerprint
entry.pointer = remoteAddress
// 3rd RTT: Updating the content of the slot
// and freeing the old key-value block asynchronously in the background
if (RdmaCas(slot, entry) == SUCCESS)

Reset(slot.pointer)
Free(slot.pointer)

else
restart

return SUCCESS

ALGORITHM 4: Search (key)

// 1st RTT: Using RDMA doorbell batching to fetch two combined buckets
suffix = ExtractSuffix(key, directory.globalDepth)
subtable = directory.subtable[suffix]
if (subtable.lock == true)

return SearchOnResize(key)
index1 = Hash1(key)
index2 = Hash2(key)
bucket1, bucket2 = RdmaRead(subtable[index1], subtable[index2])
// If the cache is stale, further search is needed and the detail is shown in Section 3.4.2
if (IsBucketCorrect(subtable, bucket1, key) == false ||

IsBucketCorrect(subtable, bucket2, key) == false)
return SearchOnResize(key)

// Search the slots of two buckets for the key
returnValue = NULL
for each slot in bucket1 and bucket2

if (slot.footprint == key.footprint)
// 2nd RTT: Reading the key-value block of the current slot
block = RdmaRead(slot.pointer)
// Check the full key in the block and the checksum of the block
if (block.key == key && Check(block.crc) == SUCCESS)

returnValue = kvblock.value
break

return returnValue

as those of the old key-value block. As an RDMA WRITE is not atomic, it may write the key and
key length completely but be writing the value. At this time, if reading the key-value block, then
a client can find the key is matched. But the value is broken, which cannot be observed by the
client. To address this problem, we add a 64-bit checksum in each key-value block to enhance the
self-verification and check the integrity of a key-value block like Pilaf [33], as shown in Figure 6.

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



11:14 P. Zuo et al.

Pilaf also shows that a 64-bit checksum is sufficient for verification. The pseudo-code of the lock-
free search operation is shown in Algorithm 4.

Moreover, for insertion, deletion, and update requests, performing a CAS operation on a slot may
fail, which means the slot is changed by another client before the CAS operation. In this case, RACE
hashing re-searches the target key and then re-executes the failed insertion, deletion, or update
request.

3.4 Extendible Remote Resizing

Using extendible resizing for disaggregated memory incurs two challenges, i.e., one extra remote
access to read the directory for each index request and concurrent access during resizing, as pre-
sented in Section 2.3. In this subsection, we present a stale-read client directory cache scheme and
a concurrent access scheme during resizing to address the two challenges, respectively.

3.4.1 Client Directory Cache with Stale Reads. To reduce the extra RDMA READ for accessing
the directory, we use a client directory cache for RACE hashing. However, caching the directory in
clients incurs the data inconsistency issue between the directories in the memory pool and client
caches. For example, when a client triggers a subtable resizing or directory resizing, the content
of the directory in the memory pool is modified, and thus the directories in the caches of other
clients become stale. If other clients still query the hash table using their stale directories, then
they may locate an incorrect subtable and obtain incorrect data.

To address the inconsistency problem between client caches and the memory pool, in a baseline

solution [18], and upon a client triggers a resizing operation, the client broadcasts a notification
message to all other clients to invalidate their respective directory caches and does not start mod-
ifying the directory in the memory pool until receiving acks of all other clients. Obviously, the
baseline solution incurs high performance overhead for resizing due to broadcasting messages
and waiting for all acks. The second solution proposed by Pilaf [33] is to close the RDMA connec-
tions of all other clients to prevent these clients from performing RDMA READs once a resizing
is triggered. Clients then re-connects the memory server to obtain the new table root after the
resizing is completed. Pilaf addresses the problem of incorrect access but incurs high performance
penalty due to blocking RDMA READs of clients. Therefore, both the solutions incur significant
performance overheads.

To efficiently address this inconsistency problem, we propose a stale-read client directory

(SRCD) cache scheme that does not need to broadcast messages or close the connections of
other clients to the memory pool when triggering a resizing. Instead, by using the SRCD cache
scheme, clients query the hash table still using the stale directories in their caches but can ver-
ify whether the obtained data are correct. To achieve this, we add a header in each bucket of the
RAC hash subtable, as shown in Figure 6. The bucket header stores the LD and suffix bits
(Suffix) of the subtable that the bucket belongs to. The bucket header is not modified in IDU
requests and is modified only when the subtable is created and resized. The local depth and
suffix bits in the bucket header are used to verify whether the bucket is correct when execut-
ing search/insertion/deletion/update.

Figure 8 shows an illustration of using the SRCD cache scheme to verify the correctness of
buckets. The client currently caches the directory of the hash table shown in Figure 2(a), in which
the directory entries “01” and “11” point to the same subtable. In the memory pool, the hash table
is resized to be a new hash table shown in Figure 2(b), in which a new subtable is created and the
directory entries “01” and “11” point to different subtables. To search a key, the client first locates
a subtable using the SRCD cache with stale reads and then fetches the buckets in this subtable
via RDMA READs. After receiving a bucket, the client respectively compares the local depth and

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



RACE: One-sided RDMA-conscious Extendible Hashing 11:15

Fig. 8. The stale-read client directory scheme. Three cases when comparing the key with the fetched bucket

header.

suffix bits stored in the bucket header with the local depth of the directory entry in the
SRCD cache and the suffix bits of the key. The client can observe three cases as follows.

(1) Both local depth and suffix bits match. If the local depth and suffix bits in the bucket header

are respectively the same as the local depth of the directory entry in the cache and suffix bits of the
key, then the client can verify that the subtable is not resized and the fetched bucket is correct. For
example, the key is “XX00” that corresponds to the directory entry “00,” i.e., Case ① in Figure 8.

(2) Local depth mismatches and suffix bits matches. If the local depth in the bucket header is the

same as that of the directory entry in the cache, then the client knows the accessed subtable was
resized in the memory pool. The client further computes the suffix bits of the key using the local
depth stored in the bucket header and finds that the suffix bits of the key and those stored in the
bucket header are matched. In this case, the client can verify the bucket is also correct although the
subtable was resized. For example, the key is “XX01” but Subtable “01” was resized in the memory
pool, i.e., Case ② in Figure 8. During the resizing, the keys with “11” are moved out Subtable “01”
while the keys with “01” still remain in Subtable “01.” Therefore, when locating Subtable “01” to
search the key with “01,” the client can obtain the correct key-value item.

(3) Both local depth and suffix bits mismatch. If the local depth and suffix bits in the bucket

header mismatch, then the client can verify the subtable is resized and the searched key should be
stored in the new subtable. For example, the key is “XX11” that corresponds to the directory entry
“01” in the cache but Subtable “01” is resized in the memory pool and the key “XX11” is moved
to the new Subtable “11,” i.e., Case ③ in Figure 8. In this case, the client fetches the new directory
entries from the memory pool and re-executes the search.

In summary, only in Case “3) Both local depth and suffix bits mismatch,” the client needs to fetch
new directory entries and update the local directory cache. In other cases, the client can locate
correct buckets via stale reads. The pseudo-code of verifying the correctness of buckets is shown
in Algorithm 5.

3.4.2 Concurrent Access during Resizing. When an insertion failure occurs, a subtable resizing is
triggered. During a resizing, we need to move slots from the resized subtable to the new one. Due
to the slot movement, it is challenging to guarantee the correct execution of concurrent search,
insertion, deletion, and update requests upon the subtable that is being resized. To address this
challenge, we design the workflow of concurrent resizing as below.

To support concurrent access during resizing, the starting address of the directory in the mem-
ory pool cannot be changed. Otherwise, clients fail to find the new hash table after resizing.

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



11:16 P. Zuo et al.

ALGORITHM 5: IsCorrectBucket (subtable, bucket, key)

// Compare the local depth of the bucket and the subtable entry to detect resizing
if (bucket.localDepth != subtable.localDepth)

// Compare the suffix of the bucket and the suffix of the key to detect cache staleness
suffix = ExtractSuffix(key, bucket.localDepth)
if (suffix != bucket.suffix)

return false
return true

ALGORITHM 6: SearchOnResize (key)

// Synchronize the cache and read two corresponding combined buckets
Synchronize(directory)
suffix = ExtractSuffix(key, directory.globalDepth)
subtable = directory.subtable[suffix]
index1 = Hash1(key)
index2 = Hash2(key)
bucket1, bucket2 = RdmaRead(subtable[index1], subtable[index2])
// Search the slots of two buckets for the key
for each slot in bucket1 and bucket2

if (slot.footprint == key.footprint)
// Read the key-value block of the current slot
block = RdmaRead(slot.pointer)
if (block.key == key && Check(block.crc) == SUCCESS)

return block.value
// Detect cache staleness
if (IsBucketCorrect(subtable, bucket1, key) == false ||

IsBucketCorrect(subtable, bucket2, key) == false)
restart

// Check if the subtable is being resized
returnValue = NULL
if (subtable.lock == true && suffix.firstBit == 1)

// Search in the old subtable before resizing
oldSuffix = ComputeOldSuffix(suffix)
oldSubtable = directory.subtable[oldSuffix]
bucket1, bucket2 = RdmaRead(oldSubtable[index1], oldSubtable[index2])
returnValue = SearchBucket(bucket1, bucket2)
// Search in the subtable again
if (returnValue == NULL)

bucket1, bucket2 = RdmaRead(subtable[index1], subtable[index2])
returnValue = SearchBucket(bucket1, bucket2)

return returnValue

Therefore, we reserve a large enough contiguous memory space4 used for the future resizing of
the directory. As shown in Figure 9, the directory includes a used area and an unused area. Clients
only cache the used area. To resize the directory, e.g., increasing the GD from 1 to 2, the used area
is not changed and the new directory entries are written into the unused area.

To resize a subtable, the client first locks the directory entry of the subtable in the memory pool.
The lock only prevents other clients from resizing the same subtable but does not prevent other

4For example, if we use at most 16 suffix bits for the directory, then the memory space of 216 directory entries is reserved.

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



RACE: One-sided RDMA-conscious Extendible Hashing 11:17

Fig. 9. The resizing of the directory. The GD increases. The used area is not changed and new directory

entries are written into the unused area.

clients from executing search and IDU requests in the subtable. The client creates a new subtable
and initializes the header of each bucket in the new subtable. The client further writes the pointer
of the new subtable to the directory and locks the directory entry at the same time. The client then
starts to move items. Figure 9(b) shows an example. The client moves items with Suffix “11” from
Subtable “01” to Subtable “11.” The movement includes three steps for each bucket in Subtable
“01”: ❶ updating the suffix bits in the bucket header from “1” to “2” (one RDMA CAS), ❷ inserting
all items with Suffix “11” in this bucket into Subtable “11” (one or multiple RDMA CASes), and
❸ deleting all items with Suffix “11” in this bucket (one or multiple RDMA CASes). By guaranteeing
the order of executing the three steps, we support concurrent access to the subtable that is being
resized. In the following, we discuss how to deal with the corner cases caused by the concurrent
resizing below.
• Concurrent search: As shown in Algorithm 6, when executing a search, if we find that both

local depth and suffix bits mismatch, then the client can perceive the occurrence of the resizing
in the current subtable. In this case, the movement may be before Step ❸ or after Step ❸. If the
target key is found in the read bucket, then it means that the movement is before Step ❸ and the
search is complete. Otherwise, the movement is after Step ❸ or the key does not exist, in which
case the search operation will be re-executed by the client. If we find that suffix bits match but
the local depth mismatches, then the client has read the correct buckets. However, it is possible
that the target key has not been moved to the newly created subtable yet. The client further reads
the corresponding buckets in the old subtable to search for the target key. If the target key is not
found in the old subtable, then it is possible that the target key has been moved to the newly
created subtable. The client re-reads the buckets in the new subtable to complete the search.
• Concurrent insertion: During an insertion, the client re-reads the buckets to check duplicate

keys, as shown in Figure 7(b). To support concurrent insertion during resizing, we also check the
bucket header after re-reading the bucket that the key is inserted to. If the bucket header is not
changed, then the insertion is successful. Otherwise, the client knows that a resizing occurs in the
bucket. The client then compares suffix bits in the new bucket header with those of the inserted
key. If the suffix bits match, then the insertion is also successful. Otherwise, the client removes the
pointer from Subtable “01” and re-inserts the key into Subtable “11.” Moreover, during a subtable
resizing, an insertion may fail, i.e., not finding an empty slot in the subtable. In this case, the failed
insertion triggers the next resizing. The next resizing will be blocked until the previous resizing
releases the directory entry lock.
• Concurrent deletion/update: When executing a deletion/update, if finding that both local depth

and suffix bits mismatch, then the client waits for the completion of the movement and then
deletes/updates the key from the new subtable. If the suffix bits match and Step ❶ occurs before the

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



11:18 P. Zuo et al.

RDMA CAS operation of the deletion/update, then there are two corner cases. First, if the RDMA
CAS of the deletion/update fails, then it means the item has been moved into the new subtable. The
client will redo the deletion/update request in the new subtable. Second, the RDMA CAS of the
deletion/update succeeds. But the client performing resizing operation fails to delete one item in
Step ❸, which means that another client deleted/updated the item. The client performing resizing
further cleans the pointer of the item in the new subtable and re-executes the item movement.

In summary, during a subtable resizing, all search/update/ deletion and most insertion requests
to the subtable are concurrently executed in a lock-free way. Only the failed insertions to the
subtable are blocked due to triggering the next resizing.

4 IMPLEMENTATION DETAILS

In this section, we first present how to use the co-routine technique [13, 20] to improve the
client-side request throughput of RACE hashing. We then present the implementation of the pre-
allocation mechanism, which is used to reduce the overhead of remote memory allocation.

4.1 Client-side Request Handling

As mentioned in Section 3.1, the RACE hash table is stored in the memory pool and each client
process running on a compute node operates the hash table using one-side RDMA verbs. Within
a compute node, different applications send requests to the RACE client process to execute cor-
responding operations (i.e., search, insertion, update, and deletion). A naive solution for a client
process to handle concurrent requests is to push them into a message queue and deal with them
one by one. However, such a naive solution cannot achieve good performance due to the high exe-
cution latency. Specifically, each RACE operation contains multiple RDMA READs and WRITEs. If a
client process handles requests sequentially, then the CPU core becomes idle during each RDMA
READ and WRITE, resulting in a waste of CPU resources and low overall throughput.

To deal with the problem mentioned above, we leverage the co-routine technique [13, 20] to
improve the efficiency of RACE hashing client. Co-routines are special functions that can be sus-
pended and resumed at manually defined points during executions. In contrast to threads, the
switches of which are decided by the operating system, co-routine switches are controlled by the
programmers and do not involve any system calls.

We implement each operation of RACE hashing as a co-routine function and each function is
further decomposed into several consecutive steps. A step is a code piece of an operation that
contains exactly one RDMA verb or return statement at the end. As shown in Figure 10, the search
operation is divided into three steps. In the first step, the search opertion computes the addresses
of the buckets and launches an RDMA READ to fetch the buckets. In the second step, the search
operation searches in the read buckets for the target key and lanuches an RDMA READ to fetch
the corresponding key-value block. In the third step, the search operation compares the whole key
stored in the key-value block with the target key and returns the value.

Different from the naive solution, where operations are executed sequentially, a RACE client
executes concurrent co-routine functions at the granularity of steps. To be specific, when receiving
multiple requests, a RACE client process invokes a batch of co-routine functions to deal with those
requests concurrently. Figure 11 shows an example where two concurrent searches are executed
by a client process running with one thread. When the client process reaches the end of a step, it
launches the corresponding RDMA verb asynchronously and then switches to a ready-to-execute
step of another concurrent co-routine function. The scheduling policy of those concurrent co-
routine functions is decided by the underlying infrastructure. By taking advantage of co-routines,
RACE hashing manages to overlap CPU computation and network transmission among concurrent
operations, thus improving CPU resource utilization as well as achieving high throughput.

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



RACE: One-sided RDMA-conscious Extendible Hashing 11:19

Fig. 10. Steps of a search. Fig. 11. Two concurrent searches executed by one thread.

4.2 Memory Pre-allocation

As mentioned in Section 2.1, processes running in the compute pool leverage the interfaces pro-
vided by the memory pool to allocate and free variable-size memory blocks from the memory pool.
Since current RNIC hardware does not support allocating or freeing remote memory, we imple-
ment the interfaces of memory allocation and deallocation with remote procedure call (RPC).
In addition, to emulate the weak compute power of the memory pool, we only use one thread on
each machine in the memory pool to deal with memory allocations and deallocations.

In RACE hashing, a client needs to allocate memory for key-value blocks in insertion and update
operations to store new key-value pairs. To allocate a key-value block from the memory pool, a
RACE client launches an RPC to the memory pool and waits for the remote memory address of the
key-value block. If a client only allocates one key-value block in each RPC, then a network round-
trip is added to the critical paths of these operations and the latency is increased. What makes
things worse is the fact that we need to rely on the weak computing power of the memory pool to
deal with RPCs, which further exacerbates the performance of insertion and update operations.

To address the problem mentioned above, RACE hashing applies a pre-allocation mechanism
in the current implementation. To be specific, each RACE client maintains a local queue on the
compute node to store remote addresses of all allocated key-value blocks and the local queue is
managed by a background thread. When the number of free key-value blocks in the local queue is
smaller than a lower limit, the background thread invokes an RPC to allocate memory for a batch
of key-value blocks from the memory pool. To avoid assigning too much memory to a client, the
background thread also invokes RPCs to release some memory back to the memory pool when
the size of the local queue is larger than an upper limit. A RACE client allocates key-value blocks
directly from the queue and frees key-value blocks by putting the addresses of those blocks back to
the local queue. With the help of this pre-allocation mechanism, RACE hashing removes memory
allocations out of the critical paths of insertion and update operations, reducing the latency and
releasing the burden of the weak computing units in the memory pool.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup

Testbed. We run all experiments on five machines, each with two 26-core Intel Xeon Gold 6278C
CPUs, 384 GiB DRAM, and one 100-Gbps Mellanox ConnectX-5 IB RNIC. Each RNIC is connected

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



11:20 P. Zuo et al.

to a 100-Gbps Mellanox IB switch. One machine is used for emulating the memory pool. As men-
tioned in Section 4.2, to emulate the weak compute power, we run a process with only one thread
in the memory pool to deal with memory allocation/deallocation requests. The memory is allo-
cated and registered with huge pages to reduce the page translation cache misses of RNICs [14].
Other machines are used for building the compute pool in which each CPU core serves as a client.

Workloads. We use YCSB [11] to evaluate the performance of different hashing indexes. We use
the default Zipfian request distribution (θ = 0.99) for all YCSB workloads. For most experiments,
we use 16-byte keys and 32-byte values that are representative in real workloads of key-value
stores [7, 16, 37]. We also evaluate the impact of different key-value sizes on the performance.

Comparisons. We compare RACE hashing with three state-of-the-art RDMA-search-friendly
hashing indexes, i.e., Pilaf cuckoo hashing [33], FaRM hopscotch hashing [14], and DrTM clus-
ter hashing [46]. Based on the optimal configurations presented in their papers, we use three-way
hashing and one slot per bucket in Pilaf cuckoo hashing, four slots per main bucket, two neighbor-
hood, and two slots per overflow bucket in FaRM hopscotch hashing, and eight slots per main or
overflow bucket in DrTM cluster hashing. Moreover, since the disaggregated memory pool with-
out CPUs cannot execute two-sided RDMA verbs, we implement these hashing indexes using only
one-sided RDMA verbs as presented in Section 2.3 to facilitate a fair comparison. All key-value
items are stored outside of the hash table to support variable-length keys and values. Each hash
table is sized to store 100 million items.

5.2 Experimental Results and Analysis

5.2.1 Maximum Load Factor. The maximum load factor is defined as the ratio of the maximum
number of stored items to the total number of slots in a hash table (including slots in main and
overflow buckets), which is an important metric that affects the memory efficiency of a hash table.
We insert unique keys into RACE, Pilaf cuckoo, FaRM hopscotch, DrTM cluster hash tables until an
insertion failure occurs to evaluate their maximum load factors. Specifically, Pilaf cuckoo hashing
reaches the maximum load factor when an insertion fails to lookup an empty slot after X cuckoo
evictions. X means the maximum number of cuckoo evictions for an insertion and we evaluate
maximum load factors of Pilaf cuckoo hashing under different X values. FaRM hopscotch hash-
ing and DrTM cluster hashing reach their maximum load factors when running out of overflow
buckets. As the ratio of the number of overflow buckets to that of main buckets (called overflow-
to-main-bucket ratio) affects their maximum load factors, we evaluate their maximum load factors
under different overflow-to-main-bucket ratios. For RACE hashing, since associativity (i.e., the
number of slots per bucket) affects its maximum load factor, we evaluate its maximum load factors
under different associativity.

As shown in Figure 12, the maximum load factor of RACE hashing increases with the increase
of associativity. The maximum load factor of Pilaf cuckoo hashing increases with the increase ofX .
The maximum load factors of FaRM hopscotch hashing and DrTM cluster hashing increase with
the increase of their overflow-to-main-bucket ratios.

To facilitate a fair comparison, we configure these hash tables to approach the same maximum
load factor of 90% for the following experiments. RACE hashing reaches 90% when the associativity
is 7. With seven slots and one header, each bucket in RACE hashing is a cache-line size, i.e., 64 B.
Pilaf cuckoo hashing approaches 90% whenX = 1,000. FaRM hopscotch hashing and DrTM cluster
hashing approach 90% when their overflow-to-main-bucket ratios are 1/4 and 3, respectively.

5.2.2 Execution Latency. To investigate request latencies of different hashing indexes, we re-
spectively execute 1 million search, update, deletion, and insertion requests using one thread when

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



RACE: One-sided RDMA-conscious Extendible Hashing 11:21

Fig. 12. Maximum load factors of different hash tables. In FaRM hopscotch hashing and DrTM cluster hash-

ing, overflow buckets indicate the buckets linked in conflicting lists. The load factor indicates the ratio of the

number of occupied slots to that of all slots in both overflow and main buckets. The overflow-to-main-bucket

ratio means the ratio of the number of overflow buckets to that of main buckets.

these hash tables are in different load factors and evaluate average latencies of different requests,
as shown in Figure 13. The items for search, update, and deletion are recently inserted [11].

Figure 13(a) shows the average insertion latencies of different hash tables. With the increase of
load factors, the insertion latency of Pilaf cuckoo hashing exponentially increases due to causing
more and more eviction operations and thus producing a large number of RDMA WRITEs and locks;
the insertion latency of FaRM hopscotch hashing dramatically increases due to linearly probing
more buckets to find empty slots and linking overflow buckets; the insertion latency of DrTM
cluster hashing increases due to traversing longer bucket lists and linking new overflow buckets.
The insertion latency of RACE hashing does not increase with the increase of load factors due to
not causing any extra RDMA operations in which an insertion has three RTTs. When the hash
tables are at the load factor of 90%, RACE hashing reduces the insertion latency by 1.9×, 8.8×, and
57.4× compared with DrTM cluster hashing, FaRM hopscotch hashing, and Pilaf cuckoo hashing,
respectively.

Figure 13(b) shows the average search latencies of different hash tables and all search requests
are lock-free. A search in Pilaf cuckoo hashing needs 1.6 RTTs on average to serially read buckets
and 1 RTT to read key-value block. A search in FaRM hopscotch hashing needs only 2 RTTs (one
reads the neighborhood and the other reads the key-value block) at a low load factor and its latency
increases in a high load factor due to traversing linked buckets. The search latency of DrTM cluster
hashing sharply increases with the increase of the load factor, since the bucket list becomes longer.
When the hash tables are at the load factor of 90%, RACE hashing reduces the search latency by
2.3×, 1.2×, and 1.4× compared with DrTM cluster hashing, FaRM hopscotch hashing, and Pilaf
cuckoo hashing, respectively.

Figure 13(c) and (d) show the average deletion and update latencies of different hash tables,
which deliver similar characteristics to those of search latencies. But deletion and update latencies

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



11:22 P. Zuo et al.

Fig. 13. Average latencies of different requests when hash tables are in different load factors.

of DrTM cluster hashing, FaRM hopscotch hashing, and Pilaf cuckoo hashing are much higher
than their search latencies due to the needs of locking, unlocking, modifying slots, and unlinking
buckets. The deletion and update latencies of RACE hashing are only higher than its search latency
by 1-RTT latency. When the hash tables are at the load factor of 90%, RACE hashing reduces the
deletion and update latencies by 1.8–2.3× and 1.6–2.2×, respectively.

5.2.3 Concurrent Throughput. To investigate the concurrent request throughput of different
hashing indexes, we first load 100 million items into a hash table and then successively execute
10 million searches, updates, deletions, and insertions to evaluate the concurrent throughput of
different requests. We also vary the numbers of client processes to investigate the change of the
throughput with the increase of clients, as shown in Figure 14. When the number of clients is not
larger than 32, they are run in one client machine. When the number of clients is 64 and 128, they
are run in two and four client machines, respectively.

Figure 14(a) shows the concurrent throughput of insertion requests. The insertion throughputs
of Pilaf cuckoo hashing and FaRM hopscotch hashing are much less than that of RACE hashing, of
which reasons are the same as those of their high execution latencies. The insertion throughput
of RACE hashing is 16.9×, 5.3×, and 1.4× on average higher than those of Pilaf cuckoo hashing,
FaRM hopscotch hashing, and DrTM cluster hashing, respectively.

Figure 14(b) shows the concurrent throughput of search requests. Pilaf cuckoo hashing, FaRM
hopscotch hashing, and RACE hashing have a similar search throughput that is higher than that
of DrTM cluster hashing. This is because DrTM cluster hashing needs to traverse linked bucket
lists. The search throughput of RACE hashing is 1.7× on average higher than that of DrTM cluster
hashing.

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



RACE: One-sided RDMA-conscious Extendible Hashing 11:23

Fig. 14. Concurrent throughput of different requests when using different numbers of client processes.

Figure 14(c) and (d) show the concurrent throughput of deletion and update requests, respec-
tively. The deletion and update throughput of RACE hashing is 1.7–2.1× and 1.5–1.9× higher than
other hashing schemes due to the benefits of locking-free concurrency and RAC index structure.

5.2.4 YCSB Hybrid Workloads. To evaluate the throughput of different hashing indexes under
YCSB hybrid workloads, we first load 90 million items into a hash table and then respectively
run hybrid search/insertion workloads with different ratios. All tests use 128 client processes. The
experimental results are shown in Figure 15. We observe that the throughput of all hashing indexes
increases with the increase of search/insertion ratios, and RACE hashing performs the best for
all search/insertion ratios due to having both high search and insertion performance. Compared
with DrTM cluster hashing, FaRM hopscotch hashing, and Pilaf cuckoo hashing, RACE hashing
improves the performance of hybrid workloads by 1.4×, 4.9×, and 13.7×, respectively, when the
search/insertion ratio is 10%/90%.

5.2.5 Variable-length Values. We increase the size of the key-value (KV) block from 64 B to
8 KB to evaluate the impact of variable-length KV sizes on the performance of RACE hashing, as
shown in Figure 16. With the increase of the KV size, the latencies of insertion, deletion, update,
and search requests increase due to reading and writing larger data. When the KV size is no larger
than 512 B, the increase of latencies is slight.

5.2.6 Extendible Remote Resizing. To support extendible remote resizing, we propose two tech-
niques, i.e., the SRCD cache and concurrent access during resizing as presented in Section 3.4. We
investigate the impact of the two techniques on the performance of RACE hashing.

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



11:24 P. Zuo et al.

Fig. 15. Hybrid workloads. Fig. 16. Variable KV sizes.

Fig. 17. The SRCD cache. Fig. 18. Concurrent access.

Figure 17 shows the performance of RACE hashing with and without the SRCD cache. We ob-
serve that using the SRCD cache reduces 23%, 32%, 24%, and 23% of insertion, search, deletion,
and update latencies, respectively. This is because using the SRCD cache reduces one extra RDMA
READ for accessing the directory.

To investigate concurrent access during resizing, we run two clients of which one executes in-
sertions to trigger multiple resizings (the GD increases from 2 to 5) and the other executes random
searches at the same time. We evaluate the average search latencies of RACE hashing with and
without concurrent access during resizing as shown in Figure 18. Without the concurrent access,
the average search latency during the resizing significantly increases, since the searches stall until
a resizing is completed. With the concurrent access, the average search latency during the resizing
does not significantly increase and thus is about two orders lower than that without concurrent
access.

5.2.7 Associativity. In the previous experiments, we fix the associativity of RACE hashing to 7
to faciliate a fair comparison with other hash tables. To investigate the impact of associativity on
request latencies of RACE hashing, we execute 1 million search, update, deletion, and insertion
requests, respectively, on RACE hash tables with different associativities using one thread. The
initial load factors of all hash tables are set to 0.5. Figure 19 shows the request latencies of four
RACE hashing operations under different associativities. When we increase the associativity from
4 to 32, the latencies of insertion, search, deletion, and update increase by 6.8%, 0.8%, 1.5%, and 4.7%,
respectively, which indicates that associativity has little impact on the latencies of RACE hashing
operations.

To investigate the impact of associativity on the concurrent request throughput of RACE hash-
ing, we first load 100 million items into RACE hash tables of different associativities and then
execute 10 million searches, updates, deletions, and insertions using 64 clients. To facilitate a fair
comparison, we build RACE hash tables with different associativities with the same amount of
memory. As shown in Figure 20, the throughputs of all operations decrease significantly with the

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



RACE: One-sided RDMA-conscious Extendible Hashing 11:25

Fig. 19. Request latencies of different oper-

ations under different associativities.

Fig. 20. Concurrent throughputs of differ-

ent operations under different associativi-

ties.

Fig. 21. Client-side throughputs with dif-

ferent numbers of concurrent co-routine

tasks.

Fig. 22. Latencies with pre-allocation.

increase of associativity. When we increase the associativity from 4 to 64, the throughputs of in-
sertion, search, deletion, and update decrease by 59%, 62%, 48%, and 44%, respectively. The reason
is that large associativity causes read amplification and the network bandwith becomes the bottle-
neck. Nevertheless, increasing associativity improves the maximum load factor of RACE hashing
as shown in Figure 12(a). Therefore, setting the associativity is a tradeoff between the performance
and memory utilization of the RACE hash table.

5.2.8 Client-side Request Handling. As presented in Section 4.1, we use co-routines to imple-
ment all the operations of RACE hashing to improve the throughput of client-side request han-
dling. To demonstrate the effect of co-routine, we first load 1 million key-value pairs into a RACE
hash table and then execute 1 million search, update, deletion, and insertion requests, respectively,
using one client thread with different numbers of concurrent co-routine tasks. When the number
of concurrent tasks is set to 1, the client thread executes all requests sequentially.

Figure 21 shows the throughputs of handling client-side insertion, search, deletion, and update
requests with different numbers of concurrent co-routine tasks. When we increase the number of
concurrent co-routine tasks from 1 to 16, the throughputs of insertion, search, deletion, and update
are improved by 2.2×, 2.6×, 2.7×, and 2.4×, respectively. We also observe that the increase in the
throughputs slows down with the increase in the number of concurrent tasks and the throughputs
of all operations stop increasing when the number of tasks is larger than 8. This is because with
many concurrent tasks, the client-side CPU is exhausted and becomes the new bottleneck.

5.2.9 Memory Allocation. To investigate the benefit of pre-allocation machanism proposed in
Section 4.2, we execute 1 million insertion and update operations, respectively, on the RACE hash
tables with and without the pre-allocation machanism. When pre-allocation is disabled, each

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



11:26 P. Zuo et al.

insertion or update launches one RPC to the memory pool to allocate one key-value block. We
initialize the load factors of two RACE hash tables to 0.5. As shown in Figure 22, the latencies of in-
sertion and update with pre-allocation are more than 2× lower than the latencies of insertion and
update without pre-allocation. The reason is that the overheads of memory allocations are removed
from the critical paths of insertion and update operations when the pre-allocation machanism is
enabled.

6 DISCUSSION

Concurrency Correctness. RACE hashing follows the concurrency correctness condition of no

lost keys [32]: “a дet (K ) operation must return a correct value for K , regardless of concurrent
writers.” Specifically, when a search and an update run concurrently, the search can return either
the new or the old value, while both of them should be unbroken and atomic. When a search and
a deletion run concurrently, the search can return no key or the value that will be deleted.

Resizing Execution. In our current implementation, the client triggering the resizing itself
performs the resizing. To improve the implementation, the client can create a background
client/thread to perform the resizing.

Hardware Failure. Handling hardware failures including network failure, memory failure, and
client CPU failure in the disaggregated memory architecture is complicated and tough. For exam-
ple, after locking a directory entry, the client fails. To handle this failure, we need to enable other
clients to perceive the failed client and release the lock directory entry or use the lease-based
lock [46]. Our article mainly focuses on the design of hashing index for disaggregated memory
and plan to extend RACE hashing to support the handle of hardware failures in the future work.

7 RELATED WORK

Memory Disaggregation. Memory disaggregation has recently received widespread attentions
due to providing significant benefits for datacenters on resource utilization and scaling. Existing
work studies various components in datacenters to support memory disaggregation including op-
erating systems [40], hardware architectures [30, 31], memory managements [4, 39, 42–44], net-
works [1, 9, 12, 41], and new requirements [5, 19]. RACE hashing focuses on the design of index
structures in the disaggregated memory that is orthogonal to these works.

Hashing Indexes on RDMA. With the wide use of RDMA in modern datacenters, RDMA-search-
friendly hashing indexes have been intensively studied [14, 33, 46]. These hashing indexes are
designed for traditional monolithic servers, which however fails to efficiently work on the new
disaggregated memory architecture, due to producing a large number of RDMA operations when
executing IDU requests. RACE hashing is the first hashing index designed for disaggregated mem-
ory, in which all index requests can be efficiently executed by using only one-sided RDMA opera-
tions. Moreover, KV-direct [26] leverages programmable NICs with FPGA to offload hashing index
operations, which is orthogonal to our article that does not reply on FPGA.

Concurrent Hashing Indexes. Different concurrent hashing indexes are proposed to deliver
high access throughput. MemC3 [16] uses a global lock to multi-reader and single-writer con-
currency for concurrent cuckoo hashing. Libcukoo [28] leverages fine-grained locking to achieve
multi-reader and multi-writer concurrent cuckoo hashing. Existing work [10, 35, 48] also proposes
concurrent hashing indexes for persistent memory. However, all these existing schemes focus on
concurrent access to local memory. Unlike them, our RACE hashing addresses the challenge of con-
current access to remote memory in hash indexes and enables all index requests to be executed in
a lock-free manner.

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.



RACE: One-sided RDMA-conscious Extendible Hashing 11:27

8 CONCLUSION

This article proposes RACE hashing, a one-sided RDMA-conscious extendible hashing index for
disaggregated memory with lock-free remote concurrency control and efficient remote resizing.
The hash table structure is designed to be one-sided RDMA-conscious, achieving that all index re-
quests can be executed using only one-sided RDMA verbs while delivering high performance with
constant-scale worst-case time complexity. Moreover, RACE hashing leverages a lock-free remote
concurrency control scheme to enable index requests to be concurrently executed in a lock-free
manner, and a stale-read client directory cache scheme to reduce one extra RDMA read for ac-
cessing the directory while guaranteeing the correctness of stale cache reads. We also achieve
concurrent access to the subtable that is being resized. Experimental results show that RACE hash-
ing outperforms state-of-the-art distributed in-memory hashing indexes by up to 13.7× in YCSB
hybrid workloads.

REFERENCES

[1] 2022. Gen-Z Technology. Retrieved from https://genzconsortium.org/.

[2] 2022. Memcached—A Distributed Memory Object Caching System. Retrieved from https://memcached.org/.

[3] 2022. Redis. Retrieved from https://redis.io/.

[4] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun Ra-

manathan, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei. 2018.

Remote regions: A simple abstraction for remote memory. In Proceedings of the USENIX Annual Technical Conference

(USENIX ATC’18). 775–787.

[5] Marcos K. Aguilera, Kimberly Keeton, Stanko Novakovic, and Sharad Singhal. 2019. Designing far memory data struc-

tures: Think outside the box. In Proceedings of the Workshop on Hot Topics in Operating Systems (HotOS’19). 120–126.

[6] Krste Asanović and David Patterson. 2014. FireBox: A hardware building block for 2020 warehouse-scale computers.

In Proceedings of the USENIX Conference on File and Storage Technologies (FAST’14).

[7] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. 2012. Workload analysis of a large-

scale key-value store. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on

Measurement and Modeling of Computer Systems (SIGMETRICS’12). 53–64.

[8] Mark S. Birrittella, Mark Debbage, Ram Huggahalli, James Kunz, Tom Lovett, Todd Rimmer, Keith D. Underwood, and

Robert C. Zak. 2015. Intel Omni-path architecture: Enabling scalable, high performance fabrics. In Proceedings of the

IEEE 23rd Annual Symposium on High-Performance Interconnects (HOTI’15). IEEE, 1–9.

[9] Amanda Carbonari and Ivan Beschasnikh. 2017. Tolerating faults in disaggregated datacenters. In Proceedings of the

16th ACM Workshop on Hot Topics in Networks (HotNets’17). 164–170.

[10] Zhangyu Chen, Yu Hua, Bo Ding, and Pengfei Zuo. 2020. Lock-free concurrent level hashing for persistent memory.

In Proceedings of the USENIX Annual Technical Conference (USENIX ATC’20). 799–812.

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking cloud

serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC’10). 143–154.

[12] Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian Kash. 2015. R2C2: A network stack for rack-scale computers. In

Proceedings of the ACM Conference on Special Interest Group on Data Communication (SIGCOMM’15). 551–564.

[13] Ana Lúcia De Moura and Roberto Ierusalimschy. 2009. Revisiting coroutines. ACM Trans. Program. Lang. Syst. 31, 2,

Article 6 (February 2009), 31 pages.

[14] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hodson. 2014. FaRM: Fast remote memory.

In Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI’14). 401–414.

[15] Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and H Raymond Strong. 1979. Extendible hashing-a fast access

method for dynamic files. ACM Trans. Database Syst. 4, 3 (1979), 315–344.

[16] Bin Fan, David G. Andersen, and Michael Kaminsky. 2013. Memc3: Compact and concurrent memcache with dumber

caching and smarter hashing. In Proceedings of the 10th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI’13). 371–384.

[17] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and Dejan Milojicic. 2015. Beyond processor-centric operating

systems. In Proceedings of the 15th Workshop on Hot Topics in Operating Systems (HotOS’15).

[18] Michael J. Franklin, Michael J. Carey, and Miron Livny. 1997. Transactional client-server cache consistency: Alterna-

tives and performance. ACM Trans. Database Syst. 22, 3 (1997), 315–363.

[19] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy,

and Scott Shenker. 2016. Network requirements for resource disaggregation. In Proceedings of the 12th U SEN I X

Symposium on Operating Systems Design and Implementation (OSDI’16). 249–264.

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.

https://genzconsortium.org/
https://memcached.org/
https://redis.io/


11:28 P. Zuo et al.

[20] Yongjun He, Jiacheng Lu, and Tianzheng Wang. 2020. CoroBase: Coroutine-oriented main-memory database engine.

arXiv:2010.15981. Retrieved from https://arxiv.org/abs/2010.15981.

[21] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. 2008. Hopscotch hashing. In Proceedings of the International Sympo-

sium on Distributed Computing (DISC’08). Springer, 350–364.

[22] Hewlett Packard Corporation. 2015. The Machine: A New Kind of Computer. Retrieved from https://www.hpl.hp.com/

research/systems-research/themachine/.

[23] Intel Corporation. 2022. Intel Rack Scale Design Architecture. Retrieved from https://www.intel.com/content/www/

us/en/architecture-and-technology/rack-scale-design-overview.html.

[24] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design guidelines for high performance RDMA systems.

In Proceedings of the USENIX Annual Technical Conference (USENIX ATC’16). 437–450.

[25] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and Parthasarathy Ranganathan. 2013. Meet

the walkers: Accelerating index traversals for in-memory databases. In Proceedings of the 46th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO’15). 468–479.

[26] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew Putnam, Enhong Chen, and Lintao

Zhang. 2017. KV-Direct: High-performance in-memory key-value store with programmable NIC. In Proceedings of the

26th Symposium on Operating Systems Principles (SOSP’17). 137–152.

[27] Sheng Li, Hyeontaek Lim, Victor W. Lee, Jung Ho Ahn, Anuj Kalia, Michael Kaminsky, David G. Andersen, O. Seongil,

Sukhan Lee, and Pradeep Dubey. 2015. Architecting to achieve a billion requests per second throughput on a single

key-value store server platform. In Proceedings of the 42nd Annual International Symposium on Computer Architecture

(ISCA’15). 476–488.

[28] Xiaozhou Li, David G. Andersen, Michael Kaminsky, and Michael J. Freedman. 2014. Algorithmic improvements for

fast concurrent cuckoo hashing. In Proceedings of the 9th European Conference on Computer Systems (EuroSys’14). 1–14.

[29] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017. Cicada: Dependably fast multi-core in-memory

transactions. In Proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD’17). 21–35.

[30] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K. Reinhardt, and Thomas F. Wenisch.

2009. Disaggregated memory for expansion and sharing in blade servers. In Proceedings of the 36th Annual International

Symposium on Computer Architecture (ISCA’09). 267–278.

[31] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan Chang, Parthasarathy Ranganathan, and

Thomas F. Wenisch. 2012. System-level implications of disaggregated memory. In Proceedings of the IEEE International

Symposium on High-Performance Comp Architecture (HPCA’12). IEEE, 1–12.

[32] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness for fast multicore key-value storage.

In Proceedings of the 7th ACM European Conference on Computer Systems (EuroSys’12). 183–196.

[33] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using one-sided RDMA reads to build a fast, CPU-efficient

key-value store. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC’15). 103–114.

[34] Michael Mitzenmacher. 2001. The power of two choices in randomized load balancing. IEEE Trans. Parallel Distrib.

Syst. 12, 10 (2001), 1094–1104.

[35] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H. Noh, and Beomseok Nam. 2019. Write-optimized dynamic

hashing for persistent memory. In Proceedings of the 17th USENIX Conference on File and Storage Technologies (FAST’19).

31–44.

[36] Nhan Nguyen and Philippas Tsigas. 2014. Lock-free cuckoo hashing. In Proceedings of the IEEE 34th International

Conference on Distributed Computing Systems (ICDCS’14). IEEE, 627–636.

[37] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy, Mike

Paleczny, Daniel Peek, Paul Saab, et al. 2013. Scaling memcache at facebook. In Proceedings of the 10th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI’13). 385–398.

[38] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. J. Algor. 51, 2 (2004), 122–144.

[39] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. 2020. AIFM: High-performance,

application-integrated far memory. In Proceedings of the 14th USENIX Symposium on Operating Systems Design and

Implementation (OSDI’20). 315–332.

[40] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: A disseminated, distributed OS for hard-

ware resource disaggregation. In Proceedings of the 13th USENIX Symposium on Operating Systems Design and Imple-

mentation (OSDI’18). 69–87.

[41] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh Lee, Han Wang, Rachit Agarwal, and Hakim

Weatherspoon. 2019. Shoal: A network architecture for disaggregated racks. In Proceedings of the 16th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI’19). 255–270.

[42] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. 2020. Disaggregating persistent memory and controlling them re-

motely: An exploration of passive disaggregated key-value stores. In Proceedings of the USENIX Annual Technical

Conference (USENIX ATC’20). 33–48.

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.

https://arxiv.org/abs/2010.15981
https://www.hpl.hp.com/research/systems-research/themachine/
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html


RACE: One-sided RDMA-conscious Extendible Hashing 11:29

[43] Shin-Yeh Tsai and Yiying Zhang. 2017. Lite kernel rdma support for datacenter applications. In Proceedings of the 26th

Symposium on Operating Systems Principles (SOSP’17). 306–324.

[44] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh Nguyen, Michael D Bond, Ravi Netravali,

Miryung Kim, and Guoqing Harry Xu. 2020. Semeru: A memory-disaggregated managed runtime. In Proceedings of

the 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI’20). 261–280.

[45] Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. 2018. Easy lock-free indexing in non-volatile memory. In

Proceedings of the IEEE 34th International Conference on Data Engineering (ICDE’18). IEEE, 461–472.

[46] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast in-memory transaction processing using

RDMA and HTM. In Proceedings of the 25th Symposium on Operating Systems Principles (SOSP’15). 87–104.

[47] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael Stonebraker. 2014. Staring into the abyss:

An evaluation of concurrency control with one thousand Cores. Proc. VLDB Endow. 8, 3 (Nov. 2014), 209–220.

[48] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-optimized and high-performance hashing index scheme for persistent

memory. In Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI’18).

461–476.

Received November 2021; revised November 2021; accepted January 2022

ACM Transactions on Storage, Vol. 18, No. 2, Article 11. Publication date: April 2022.


