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Disaggregated memory systems separate monolithic servers into different components, including compute

and memory nodes, to enjoy the benefits of high resource utilization, flexible hardware scalability, and effi-

cient data sharing. By exploiting the high-performance RDMA (Remote Direct Memory Access), the compute

nodes directly access the remote memory pool without involving remote CPUs. Hence, the ordered key-

value (KV) stores (e.g., B-trees and learned indexes) keep all data sorted to provide range query services

via the high-performance network. However, existing ordered KVs fail to work well on the disaggregated

memory systems, due to either consuming multiple network roundtrips to search the remote data or heavily

relying on the memory nodes equipped with insufficient computing resources to process data modifications.

In this article, we propose a scalable RDMA-oriented KV store with learned indexes, called ROLEX, to co-

alesce the ordered KV store in the disaggregated systems for efficient data storage and retrieval. ROLEX

leverages a retraining-decoupled learned index scheme to dissociate the model retraining from data modi-

fication operations via adding a bias and some data movement constraints to learned models. Based on the

operation decoupling, data modifications are directly executed in compute nodes via one-sided RDMA verbs

with high scalability. The model retraining is hence removed from the critical path of data modification and

asynchronously executed in memory nodes by using dedicated computing resources. ROLEX efficiently alle-

viates the fragmentation and garbage collection issues, due to allocating and reclaiming space via fixed-size

leaves that are accessed via the atomic-size leaf numbers. Our experimental results on YCSB and real-world

workloads demonstrate that ROLEX achieves competitive performance on the static workloads, as well as

significantly improving the performance on dynamic workloads by up to 2.2× over state-of-the-art schemes

on the disaggregated memory systems. We have released the open-source codes for public use in GitHub.
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1 INTRODUCTION

Recent disaggregated memory systems separate memory, storage, and computing resources into
independent pools [16, 36, 45] for high resource utilization, flexible hardware scalability, and ef-
ficient data sharing, which become prevalent in many datacenters and clouds [2, 3, 8]. The dis-
aggregated system adopts the Remote Direct Memory Access (RDMA)-capable networks for
communications due to the salient features, such as high throughput (40–400 Gbps), low latency
(a few microseconds), and remote CPU/kernel bypassing [12, 44, 54], which are widely supported
by InfiniBand, RoCE, and OmniPath [16, 31, 39, 44, 52].

The disaggregated memory systems become important infrastructures [1, 17, 34, 36, 42, 43, 45]
for various applications, including databases [29, 43] and in-memory key-value (KV) stores [12,
42, 47, 56]. Among them, tree-based and learned indexes are two ordered structures for the key-
value stores, which provide efficient range query performance via identifying items in a given
range [7, 24]. In the disaggregated memory systems, the machines in compute and memory pools
are respectively termed compute and memory nodes, which are specialized for computing and stor-
age purposes.

Deploying tree-based structures in the disaggregated memory system becomes inefficient, since
the inner nodes consume much memory space and fail to be fully cached, thus resulting in multiple
network roundtrips for traversing the entire tree. Various index caching schemes [33, 46, 55] pro-
pose to alleviate the network penalty via locally caching partial data, which, however, still suffer
from unavoidable capacity misses due to the rapid growth of data.

Unlike them, XStore [47] proposes to cache the learned indexes for remote data accessing, since
the learned models consume less memory footprints than tree-based structures by up to several
orders of magnitude [14, 24]. By locally holding the whole learned index structure, a one-sided
RDMA READ is sufficient for compute nodes to fetch remote data in the context of static (i.e.,
read-only) workloads. However, the design goal of XStore is not to exploit the strengths of dis-
aggregated memory systems. Instead, XStore relies on the monolithic servers to process dynamic
(i.e., read-write and write-intensive) workloads. We construct existing XStore on the disaggregated
memory systems (represented as XStore-D), rather than the conventional monolithic context, by
transferring data modification requests to memory nodes via RPCs. We observe that in fact XStore-
D becomes inefficient to handle intensive modification requests, since the computing resources in
the memory nodes are insufficient to meet the intensive computation requirements [42, 56]. As a re-
sult, new models fail to be retrained in time and the stale models expand to a large prediction range
to search dynamic workloads. The compute nodes have to consume more network roundtrips in
determining the exact positions, since the positions dynamically change for data modifications.
To avoid the penalty of large expansion, XStore-D transfers the subsequent requests to memory
nodes until new models are retrained, which further increases the computing burden upon mem-
ory nodes. It is non-trivial to coalesce ordered KV stores in the disaggregated memory systems
due to the following challenges:

(1) Limited computing resources on memory nodes. Existing ordered KV stores rely on the
monolithic servers to process write-intensive modifications [23, 47]. However, the memory
nodes in the disaggregated systems contain limited computation capability and fail to meet
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the requirements of computing-intensive operations, e.g., modifying the large B-tree and
frequently retraining models. The CPU access bottleneck on the memory nodes decreases
the overall system performance. Moreover, simply adding more CPUs to the memory pool
for data processing decreases the elasticity of the disaggregated memory systems, since the
memory and computing resources fail to be independently scaled out [36, 55].

(2) Overloaded bandwidth for data transferring. Offloading data modifications to the com-
pute nodes meets the computing requirements, which, however, rapidly fills up the entire
bandwidth due to transferring massive data. Specifically, the compute nodes consume a large
amount of network bandwidth to balance tree-based structures [7, 32], e.g., multi-level nodes
splitting and merging, as well as fetching a large amount of data to retrain models for the
learned indexes [10, 14, 40]. The network bandwidth becomes insufficient to enable high
performance for various data requests.

(3) Inconsistency issue among different nodes. Guaranteeing data consistency among differ-
ent nodes during modification is essential to prevent data loss. However, the inconsistent
states occur when different compute nodes fail to atomically complete the data and model
modification operations; e.g., multiple compute nodes compete for the same space to insert
data and the local cache becomes stale when the models are updated. The main reason is that
the atomic granularity of an RDMA operation is 8B, which is much smaller than the size of
each index operation. The compute nodes require multiple network roundtrips to guarantee
data consistency, incurring high overheads for consistency.

To address the aforementioned challenges, we propose a scalable RDMA-oriented key-value
store using learned indexes, called ROLEX, for the disaggregated memory systems, which pro-
cesses data requests on the compute nodes via one-sided RDMA operations. The context of “scal-
able” means that ROLEX efficiently supports dynamic workloads and scales out to multiple disag-
gregated nodes. Although ROLEX adopts the similar idea as XStore on the static (i.e., read-only)
operations, ROLEX is completely different from XStore in terms of the application scope, dynamic
(i.e., data modification) operations, and the index structure on memory nodes. Specifically, ROLEX
aims to efficiently support both static and dynamic workloads in the disaggregated memory sys-
tems. Unlike XStore, ROLEX does not maintain a B-tree on memory nodes to process modifications.
Instead, ROLEX directly stores the sorted data in the assigned leaves (i.e., data arrays) on memory
nodes. By judiciously decoupling the index operations and moving the retraining phase out of the
critical path, the compute nodes efficiently modify the remote data via one-sided RDMA operations.
When there are insufficient slots, ROLEX leverages a leaf-atomic shift scheme to atomically allo-
cate a new leaf for accommodating more data. By using the retraining-decoupled index structure,
ROLEX asynchronously retrains a model in the memory pool when there are sufficient comput-
ing resources. The compute nodes identify new models through a shadow redirection scheme and
synchronize the retrained models from remote nodes during the next reading. It is worth noting
that the memory node generally includes dedicated computing resources provided by FPGA or
ARM cores to offload low-computing-requirement operations [17] (e.g., infrequent retraining in
ROLEX), rather than all index operations.

We implement a prototype of ROLEX1 and evaluate the performance via widely used YCSB [50],
two real-world, and two synthetic workloads. Our experimental results show that ROLEX achieves
competitive performance with XStore-D [47] on static workloads and outperforms state-of-the-art
RDMA-based ordered KV stores by up to 2.2× on dynamic workloads. In summary, we have the
following contributions:

1The source code is available at https://github.com/iotlpf/ROLEX
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• Scalable ordered KV store for disaggregated memory systems. We propose ROLEX to di-
rectly process data requests on the compute nodes via one-sided RDMA operations, which
efficiently explores and exploits the hardware benefits of the disaggregated memory systems,
as well as avoiding the computing resources bottleneck in the memory pool.
• Retraining-decoupled learned indexes for one-sided RDMA execution. We decouple the inser-

tion and retraining operations for the learned indexes and enable compute nodes to directly
insert data without waiting for the model retraining. Non-retrained models are able to index
newly inserted data using the proposed data movement constraints.
• Atomic remote space allocation. When there are insufficient slots, the compute nodes lever-

age a leaf-atomic shift scheme to atomically allocate data arrays in the memory pool for
accommodating new data. In ROLEX, no collisions occur among different machines due to
the atomic metadata management.

2 BACKGROUND AND MOTIVATION

2.1 Disaggregated Memory Systems

The disaggregated memory systems break monolithic servers into independent network-attached
components, which meet various application requirements via independently scaling out the hard-
ware resources. Different nodes communicate with each other via RDMA NICs, such as InfiniBand,
RoCE, and OmniPath. The significant feature over the traditional network is that RDMA enables
the compute nodes to directly access the memory nodes without involving remote CPUs via one-
sided verbs, including RDMA READ, WRITE, and ATOMIC operations (e.g., compare-and-swap (CAS)

and fetch-and-add (FAA)). It is worth noting that the granularity of the ATOMIC operation is 8B,
and multiple READ and WRITE operations are completed via the doorbell batching [47] to reduce
the network latency. Moreover, even though there are no powerful CPUs in the memory pool,
each memory node generally includes dedicated computing resources provided by FPGA or ARM
cores in NICs that are used for operation offloading [17], which efficiently supports the operation
decoupling in ROLEX.

2.2 Network-attached Ordered KV Store

This article mainly focuses on the network-attached ordered key-value stores, including tree-based
and learned indexes, which keep all data sorted and meet range query requirements.

Tree-based structures. Tree-based structures [7, 20, 32] (e.g., B+-tree) store data in the leaf
nodes and construct multi-level inner nodes to search the leaves. However, the tree-based struc-
tures become inefficient to leverage one-sided RDMA for accessing remote data [47], since the local
machine fails to cache the whole index structure and has to consume multiple network roundtrip

times (RTTs) for searching the inner nodes. Recent designs [33, 46, 55] cache top-level nodes
on compute nodes to access the remote data. Among them, FG [55] designs a fine-grained B-link
tree for the disaggregated systems, which distributes tree nodes across memory nodes and modi-
fies trees with RDMA-based locks. Sherman [46] combines RDMA-friendly hardware and software
features to deliver high write performance on the remote B-link tree, which optimizes the locking
phase by constructing global locks on the on-chip memory of RDMA NICs. However, tree-based
schemes inevitably incur multiple RTTs for retrieving inner nodes when the data overflow the
limited local cache.

Learned indexes. Learned indexes show significant advantages over tree-based structures in
terms of search speed and memory consumption, due to the easy-to-use and small-sized learned
models. Specifically, the learned indexes view the process of searching data as a regression model,
which record the positions of all data by approximating the cumulative distribution function
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Fig. 1. The system performance for different schemes. (a) Read and (b) write throughputs with different num-

bers of data, using one CPU core on memory nodes.

(CDF) of the sorted keys [10, 14, 15, 24, 40]. The learned models achieve two to four orders of
magnitude space savings than the inner nodes of the tree-based structures [14], which enables
the local machine to cache the whole index structures and avoid the penalty of multiple RTTs to
determine the remote data positions.

XStore proposes a hybrid index structure, i.e., maintaining a B-tree to process modifications and
locally caching the learned indexes for remote data accessing. XStore [47] delivers high search
performance due to only requiring one RTT to access the static workloads. For the dynamic work-
loads, XStore handles the data modification requests by modifying the B-tree on the memory nodes.
At the same time, XStore expands the stale models to large prediction ranges to ensure that the
newly inserted data are contained. However, such design becomes inefficient on the disaggregated
memory systems, since the memory nodes have limited computing resources and fail to efficiently
handle the intensive modification requests. The new models fail to be retrained in time and the
stale models cause too low accuracy to search the remote data in one RTT due to the model expan-
sion. As a result, the local cache becomes invalid and the subsequent data requests are transferred
to the memory nodes via classic RPCs. The overall performance significantly decreases due to the
limited computing resources of memory nodes.

2.3 Performance Analysis

We evaluate and analyze the performance of existing network-attached KV stores in the disag-
gregated memory system. Among them, FG [55] and Sherman [46] design RDMA-enabled B-link
trees, enabling compute nodes to modify B-link trees via one-sided RDMA verbs. Moreover, we
also equip the memory nodes with limited computing resources to analyze why RPC-based KV
stores are inefficient for the disaggregated memory system, i.e., adopting the similar ideas of EMT-
D (i.e., the Masstree [32] based on eRPC [23]) and XStore-D [47] on the computation-constrained
memory nodes for evaluations.

Learned indexes outperform tree-based structures on large-scale static workloads.
Figure 1(a) shows the search throughput on static workloads. As the datasets constantly increase,
XStore-D shows higher throughput than tree-based structures, since the compute nodes cache the
whole learned index structure, rather than caching partial inner nodes for tree-based structures,
avoiding multiple RTTs to determine the data positions. XStore-D obtains remote data within one
RTT according to the prediction results of the learned models, while other schemes fail.

Index cache becomes invalid on dynamic workloads. Figure 1(b) shows the throughput on
write-intensive workloads. We observe that XStore-D delivers lower performance than Sherman,
since XStore-D sends requests to memory nodes via eRPC and relies on the limited computing
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Fig. 2. Normalized throughput with respect to EMT-D for hybrid read/write workloads.

resources of memory nodes to process modifications. The local cache of XStore-D is not fully
exploited and becomes invalid during the modification phase, while Sherman delivers higher
throughput via one-sided RDMA. However, the performance of Sherman decreases when storing
a large amount of data, since the increased inner nodes overflow the local cache.

Disaggregated system requires efficient one-sided RDMA operations. Figure 2 shows the
throughputs of different schemes with respect to EMT-D when configuring various read/write
ratios. FG and Sherman show significant advantages over EMT-D, since all index operations are
completed via one-sided RDMA. The performance of XStore-D significantly deceases when con-
figuring large write ratios, due to failing to handle writes via one-sided RDMA operations.

For existing schemes on the disaggregated memory systems, the learned indexes are limited by
dynamic workloads, while the tree-based structures are limited by the increasing cache sizes. Un-
like them, the design goal of ROLEX is to enable the ordered KV store to deliver high performance
on both static and dynamic workloads in the disaggregated system.

3 ROLEX DESIGN

3.1 Overview

We present a scalable RDMA-oriented key-value store using learned indexes (ROLEX) for the disaggre-
gated memory systems. Unlike existing schemes, ROLEX does not maintain a B-tree on the mem-
ory nodes to process data requests. Instead, ROLEX constructs the retraining-decoupled learned
indexes on the stored data and processes data requests on compute nodes via the one-sided RDMA
operations. The challenges are how to efficiently avoid the collisions of various index operations
in different compute nodes, as well as enabling all compute nodes to correctly identify the modi-
fied data with low-consistency overheads. Our main insights are to execute index operations with
atomic designs and asynchronously retrain models by decoupling the insertion and retraining op-
erations with consistency guarantees.

Figure 3 shows the overview of ROLEX. In the memory pool, ROLEX stores all data into fixed-
size leaves (i.e., arrays) and constructs a retraining-decoupled learned index based on these data,
as shown in Sections 3.2 and 3.3. To process dynamic workloads, the compute nodes directly mod-
ify the remote leaves without retraining models, since we decouple the insertion and retraining
operations. By adding a bias and some data movement constraints, the non-retrained models have
the ability to correctly identify all data even after inserting new data. To construct sufficient data
leaves for the new data with one-sided RDMA, we present a leaf-atomic shift scheme in Section 3.4,
which also keeps all data sorted for range queries and avoids the collisions among different com-
pute nodes. The stale models need to be retrained for high accuracy when a large amount of data
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Fig. 3. The design overview of ROLEX.

are modified. Although the compute nodes have sufficient computing resources for retraining, ob-
taining all the pending retraining data from memory nodes consumes much network bandwidth.
Instead, we observe that the retraining overheads mainly come from data merging and re-sorting,
while the complexity of the training algorithm is only O (N ). We reserve limited computing re-
sources in the memory pool (e.g., one CPU core on the memory node), which are sufficient to
retrain models, especially after we have offloaded most index operations to the compute nodes
and moved the retraining phase out of the critical path. With the aid of leaf tables, ROLEX asyn-

chronously retrains models in place on the memory nodes, as shown in Section 3.5. After retrain-
ing, ROLEX updates the models in the memory pool using the shadow redirection scheme, while
the compute nodes won’t synchronize the retrained models until the next reading.

3.2 Retraining-decoupled Learned Indexes

The challenges of coalescing the learned indexes on dynamic workloads come from the high over-
heads of keeping all data sorted and avoiding data loss from the learned models during insertion.
The reason for data loss is that the models record the positions of the trained data after training
while failing to find the new positions after inserting many new data unless retraining. As shown
in Figure 4, the red line represents a linear regression model that is trained on the black points
(i.e., the trained data). All data are found in the prediction range, [pred − ϵ,pred + ϵ] (i.e., the blue
block), as long as the data are not moved out of this range, where ϵ is the predefined maximum
model error. When some new data are inserted, point a moves backward to a′, which is out of the
prediction range. To record the new positions, the models are retrained via step-by-step operations,
including re-sorting data, retraining models, and synchronizing models to all compute nodes. The
system is blocked until the retraining and synchronization are completed, thus incurring a long
latency and decreasing the overall system performance.

In fact, we observe that the learned indexes don’t require frequent retraining as long as the non-
retrained models can find all data. This observation offers an opportunity to address the dilemma
in coalescing the learned indexes in the disaggregated memory systems; i.e., new data are written
to the memory pool without waiting for retraining. To achieve this design goal, we modify the
training algorithm and add some constraints to help the non-retrained models always find all data
without retraining.
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Fig. 4. The retraining-decoupled learned indexes.

Training algorithm. Leveraging multiple linear regression models is a common way to learn
the data distribution due to the efficiency of training and memory savings [10, 14, 15, 24]. We use an
improved OptimalPLR algorithm to train the piece-wise linear regression (PLR) models, since
the OptimalPLR algorithm [49] has been proved to have the minimal number of PLR models while
incurring small time and space complexity (O (N )). The key idea of OptimalPLR is to construct
multiple optimal parallelograms with 2ϵ width on the trained data, where the optimal parallelo-
gram is defined as a parallelogram of 2ϵ width in the vertical direction such that no trained data
are placed outside of the parallelogram, as the blue blocks show in Figure 4. We thus obtain the
linear regression model that intersects the two vertical sides and bisects the parallelogram.

ϵ >=max | f (Xi ) − Yi | ∀i ∈ (0,N )

Pr anдe = [f (Xi ) − ϵ − δ , f (Xi ) + ϵ + δ]
(1)

To ensure that the trained models find all data even after insertions, we improve the OptimalPLR
algorithm by adding a bias (represented as δ ) to the prediction calculation, as well as adding some
constraints on the data movements. As shown in Equation (1), the optimal parallelogram is deter-
mined by guaranteeing that the distances between the predicted (f (Xi )) and true (Yi ) positions of
all data are not larger than the predefined maximum model error (ϵ), while the prediction range
(Pr anдe ) is calculated by adding an extra δ . Hence, the area covered by the prediction ranges of
all data is larger than the determined optimal parallelogram; i.e., we extend the blue block to the
yellow one, as shown in Figure 4. In this case, the models don’t require retraining as long as the
data move no more than δ positions, since the δ data movements won’t exceed the prediction
range.

Data movement constraints. Simply adding a bias to the prediction calculation is insufficient
to achieve the design goal of operation decoupling, since the data move more thanδ positions when
inserting/deleting a large amount of data. To further address these issues, we add some constraints
on the data movements:

• Moving data within fixed-size leaves. We store the data into fixed-size arrays (termed leaves)

in the training phase, and each leaf contains at most δ data. All data are only allowed to
be moved within their assigned leaves. In this case, we identify all data via existing trained
models since no data move out of Pr anдe calculated from Equation (1). Furthermore, we
transfer the position prediction to the leaf prediction; i.e., the learned models provide a range
of leaves that may contain the queried data via Equation (2). Due to not moving out of the
assigned leaves, no data are lost. In the disaggregated memory systems, the leaves in Lr anдe
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are easily obtained via one-sided RDMA verbs.

Lr anдe =

[
f (Xi ) − ϵ

δ
,
f (Xi ) + ϵ

δ

]
∀i ∈ (0,N ) (2)

• Synonym-leaf sharing. We allocate a new leaf (nl ) to accommodate more data when a leaf (l )

has insufficient slots, where nl shares the same positions (i.e., the labels used for training)
with l . We definenl as a synonym leaf of l , which is linked via a pointer. The data of synonym
leaves move within each other to facilitate data sorting. Sincenl doesn’t change the positions
recorded by models, the learned indexes still calculate Lr anдe via Equation (2). Moreover, we
need to search the synonym leaves referred by Lr anдe , since the data may locate in the
predicted and synonym leaves.

The non-retrained models have the ability to find all data without retraining, since no data
move out of the predicted leaves. We hence decouple the insertion and retraining operations for
the learned indexes.

3.3 ROLEX Structure

To exploit the hardware benefits of the disaggregated memory systems, ROLEX stores data on the
memory nodes while processing requests on the compute nodes, as shown in Figure 3.

Memory pool stores data. Driven by the operation decoupling, we store all data into fixed-
size leaves and train a learned index on these data using our improved training algorithm. All
leaves are stored in a continuous area (termed a leaf region) allocated from an RDMA-registered
memory region. The structure of the leaf region is shown in Figure 3, where the first two 8B data
are respectively used to indicate the number of leaves that have been allocated (alloc_num) and the
total number that the leaf region can allocate. The remaining leaf region stores a large number of
leaves, and each leaf contains δ pairs of keys and values.2 To allocate a new leaf, we read alloc_num
and write it back with (alloc_num+1) via the atomic FAA. We store data in the leaf pointed by the
obtained alloc_num. The leaves are accessed via adding offsets to the start position of the leaf
region.

Some leaves become empty when removing all the contained data, which further become frag-
mented in the disaggregated memory systems when being removed from the trained models. In
this case, the fragmentation and garbage collection can be efficiently mitigated in ROLEX, since
ROLEX allocates and reclaims space via fixed-size leaves that are accessed via the atomic-size leaf
numbers. Specifically, the memory pool maintains a reclaiming queue to contain the numbers of
the deleted empty leaves. To avoid the collisions among different compute nodes, the first 8B of
data (empty_num) in the queue is preserved to indicate the number of slots that have been occupied
by the empty leaf numbers, and the remaining slots store the leaf numbers. During the runtime,
some leaves become empty after removing all the contained data, and the compute node inserts
the corresponding leaf numbers into the reclaiming queue. In this case, the compute node first
fetches empty_num and writes it back with (empty_num+1) via the atomic FAA, and then stores
the empty leaf number into the slot pointed by the obtained empty_num. Finally, the empty leaves
in the reclaiming queue are further reused to improve space utilization. It is worth noting that the
process of inserting empty leaf numbers is asynchronously conducted in the background, since re-
claiming empty leaves is not a performance-critical operation. Moreover, to prevent the compute
nodes from accessing the reused leaves via the stale models, ROLEX updates the cached models
when identifying that the model pointers change, as shown in Section 3.5.

2Similar to prior RDMA-based schemes [33, 46, 47], ROLEX stores 8B values or 8B pointers for variable-length values.
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Fig. 5. The structure of the learned models.

We train multiple PLR models on the stored leaves, and each model consists of four parts, in-
cluding the covered smallest key, the model parameters, a leaf table (LT), and a synonym leaf

table (SLT), as shown in Figure 5. LT and SLT store the leaf numbers (i.e., the alloc_num when
being allocated) to access leaves. It is worth noting that different models independently record the
data positions for training, which become easy to be updated since no position dependency exists
among models. The obtained PLR models are indexed by training upper models on the smallest
keys, where the upper models are represented as linear regression models that don’t contain leaf
tables. We repeat this procedure and construct multi-level models like PGM-index [14] due to the
small space consumption, which are fully cached in the compute nodes. Moreover, we store the
models with pointers, which efficiently support our shadow redirection scheme to update models,
as shown in Section 3.5.

Compute pool caches indexes. The memory pool is shared across compute nodes, which
supports the system scalability. Specifically, the newly added compute nodes identify the shared
memory pool via the RNIC, which obtain the starting addresses of the model and leaf regions.
After reading the learned models from the model region, the new compute nodes efficiently access
the remote data according to the prediction range of the learned models, where the entry in the
prediction range contains the leaf region number and the leaf number, thus indicating the locations
of the required data in the memory pool. ROLEX processes various data requests (e.g., search,
update, insert, and delete) on compute nodes with one-sided RDMA operations.

3.4 One-sided Index Operations

Simply executing data modification operations on compute nodes incurs two challenges, i.e., long
latency of multiple remote operations and inconsistency issues among different machines. For ex-
ample, on dynamic workloads, conflicts occur when different compute nodes write data at the same
address in the memory pool, and inconsistencies occur when one node constructs new leaves while
not notifying others. The 8B-atomic RDMA verbs fail to guarantee the data consistency among dif-
ferent machines, since the moved data during insertion are larger than 8B. An intuitive solution is
to modify data leaves and LTs with locks, as well as broadcasting other nodes to synchronize their
indexes after modifications. However, other nodes could not access or insert data due to the con-
sistency requirement from the locks until the modification completes, which blocks the systems
for a long time.

To address these problems, we propose a leaf-atomic shift scheme that provides consistency
guarantees for concurrently modifying data via compute nodes while requiring few remote RDMA
operations. The key insights are to atomically assign the write regions in the shared memory
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pool for different compute nodes and enable each compute node to access data via the stale index
structure. Specifically, we first show the structures of LT and SLT that are designed for the leaf-
atomic shift scheme and then respectively elaborate how different index operations coalesce with
this scheme.

The structures of LT and SLT. We leverage the 8B alloc_num in the leaf region to enable
the lock-free leaf allocations via FAA, as well as using 8B entries in LT to enable the consistent leaf
modifications. The structures of LT and SLT are shown in Figure 5. The first slot in SLT is preserved
to indicate how many slots (slotuse ) of SLT have been used, which is modified when constructing
new synonym leaves. Other slots of LT and SLT store 8B entries, each of which consists of a lock
(1 bit), a leaf-region number (7 bits), a pointer (8 bits), and a leaf number (48 bits). The lock is
lightweight and fine-grained due to only locking the current leaf rather than all leaves under the
model. We use the leaf region and leaf numbers to determine the leaves, while the pointer points
to an offset of SLT to link the synonym leaf. For example, as shown in Figure 5, the pointer of leaf
0 points to 3, indicating that leaf 0 has a synonym leaf stored in the third position of SLT, while
this synonym leaf is stored in the sixth position in the leaf region. The size of LT is determined
in the training phase, while the size of SLT is fixed to contain 28 slots. In our design, each leaf
region registers up to 248 leaves, while a model is able to construct up to (28-1) synonym leaves.
It is worth noting that the max number of each field can be adjusted by specifying the bits in the
entry of LT.

Point query. For a given key, the compute node searches remote data via the following steps:
① Predict Lr anдe with the local learned indexes according to Equation (2). ② Translate the leaf
positions into physical addresses by looking up LT and SLT. As shown in Figure 5, we look up
the first through third entries in LT when Lr anдe predicts [1, 3], and further read the synonym leaf
number in the sixth slot of SLT when the second entry points to 6. The physical address (phy_addr )
of a remote leaf is calculated via Equation (3), i.e., multiply the leaf number (lnum ) by the leaf size
(lsize ) and add the address of the first leaf in the leaf region (LRaddr ). ③ Read leaves with doorbell
batching according to the physical addresses. ④ Search the fetched leaves and further read the
value according to the value pointer. ROLEX leverages the checksum-based schemes like existing
KV stores [12, 47, 48] to guarantee the consistency of the read leaves.

The LT and SLT change when constructing new leaves in the memory pool, which is identified
by the compute nodes when the first slot (i.e., slotuse ) of SLT changes in the doorbell-batch reading.
The compute nodes synchronize remote LT and SLT and read the new leaves for data consistency.

phy_addr = lnum ∗ lsize + LRaddr (3)

Range query. A range query for [K ,N ] requires N items starting fromK . Apart from the leaves
in Lr anдe , ROLEX reads another (N /δ ) adjacent leaves to ensure that at least N items after K are
fetched. Like point query, ROLEX reads all required leaves via a doorbell batching.

Insert. ROLEX executes the insertion operation on compute nodes via the following phases:

❶ Fetching. The compute node (represented asCnode ) fetches the remote leaves like point query
without reading synonym leaves in this phase, since the latest synonym leaves will be fetched
after acquiring the lock.

❷ Fine-grained locking.Cnode determines the leaf to be inserted (represented as Linser t ) accord-
ing to the data order and locks Linser t by changing the lock bit of the LT entry to 1 with
CAS. After locking,Cnode reads Linser t and its synonym leaves to ensure that the data are up
to date. The synonym leaves share the same lock with the trained leaf to enable the atomic
lock. Even if Linser t and its synonym leaves are modified by other compute nodes before
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Fig. 6. The insertion operation of ROLEX.

being locked by Cnode , inserting data into these leaves still keeps all data sorted, since the
data of Linser t are only allowed to move within Linser t and its synonym leaves.

❸ Writing and unlocking.Cnode inserts data into the fetched leaves according to the data order
and unlocks Linser t via CAS.

When the fetched leaves have insufficient empty slots, Cnode constructs a new synonym leaf
as shown in Figure 6. Within one doorbell batching,Cnode fetches and increases the alloc_num of
the leaf region and slotuse of SLT by 1 via FAA. Furthermore, Cnode writes the new synonym leaf
in the memory pool according to the physical address calculated by Equation (3) and inserts the
alloc_num of the newly constructed synonym leaf into SLT at position slotuse .Cnode also changes
the pointer field of Linser t to the new leaf and unlocks Linser t via CAS.

For optimizations, other threads of Cnode can leverage the acquired lock to modify the same
leaves, and the operations of writing leaves and modifying leaf tables are completed in one doorbell
batching to improve the performance.

Update. Cnode fetches the remote leaves like point query. When the given key is matched in
one of the fetched leaves, Cnode locks and re-reads the corresponding leaf to ensure that the data
are up to date. The compute node updates the key-value item and unlocks the remote leaf.

Delete. To delete the data K ,Cnode ❶ fetches and ❷ locks the remote leaves like insertion oper-
ations; e.g., Cnode fetches the leaf L1 and its synonym leaves L5−8. When K is identified in one of
the fetched leaves, e.g., L6, Cnode removes K in L6, while other leaves are not modified. When L6

becomes empty after deleting K , Cnode removes L6 by modifying the leaf table, i.e., changing the
leaf pointers of L5 to L7 to unlink L6. ❸Cnode writes L6 to memory nodes and unlocks the leaves.
Moreover, the empty trained leaf L1 is not removed until the next retraining to avoid the prediction
error, as shown in Section 3.5. Other compute nodes identify the deleted leaf when observing that
the data in the synonym leaves are not sorted, which further synchronize the leaf tables and read
the remote data.

3.5 Asynchronous Retraining

The retraining overheads come from the data re-sorting and retraining algorithms [40, 49]. An
intuitive solution is to conduct retraining on compute nodes, which, however, consumes a large
amount of available network bandwidth for transferring the pending retraining data. Instead, we
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Fig. 7. The consistency guarantee of concurrent retraining.

observe that all data have been sorted by the leaf tables (i.e., LTs and SLTs) during the runtime,
and the OptimalPLR algorithm has a low complexity (i.e.,O (N )) [49] to train data, where N repre-
sents the number of the training data. Hence, ROLEX asynchronously retrains data in place on the
memory nodes to achieve an efficient tradeoff between the network consumption and computing
resource utilization. After offloading most index operations to the compute nodes, our experimen-
tal results show that the limited computing resources (e.g., one CPU core) on memory nodes are
enough for retraining, as shown in Section 5.5.

ROLEX maintains a circular queue (CirQ) to identify the pending retraining models and con-
currently retrains models using the shadow redirection scheme without blocking the systems.
Specifically, the compute nodes insert the pointer of a model at the end of CirQ when the model
consumes 27 slots of SLT. The memory nodes periodically check the head of CirQ for retraining,
which retrains models in the background and constructs a new LT to merge the old LT and SLT,
while the compute nodes concurrently access the old models. Both new and old models access the
same data via their own leaf tables. After retraining, the memory nodes replace the models with
consistency guarantees.

Consistency guarantee. Figure 7 shows the consistency guarantee when the memory nodes
concurrently retrain the leaves L1−5, where L5 is a synonym leaf of L3. During retraining, the
compute nodes concurrently modify the data, which leads to inconsistency when the positions of
the data are not retrained by the new model, e.g., (1) constructing a new synonym leaf L8 of L5 and
(2) moving data within the synonym leaves. ROLEX ensures the data consistency by redirecting
the non-retrained data into a new SLT for the new model.

(1) ROLEX identifies the newly constructed leaf (e.g., L8) by checking the leaf tables of both old
and new models, where the entry appearing in the old LT or SLT but not appearing in the new LT is
identified as a non-retrained leaf. When replacing the old model with the new one after retraining,
ROLEX locks the old model and inserts L8 to the new SLT, as well as changing the model pointer to
the new model before unlocking, as shown in Figure 7. Hence, the new model correctly identifies
L8 by accessing the new leaf tables, and the compute nodes correctly identify the new model by
checking the model pointer. Similarly, the removed leaves are identified by checking both old and
new leaf tables.

(2) ROLEX identifies the new positions of the moved data by checking the previous trained
leaf. As shown in Figure 7, before the retraining begins, we respectively represent the leftmost
and rightmost data in each leaf as Xl and Xr ; e.g., X3l represents the leftmost data of L3. During
retraining, the old model inserts the new item 15 in L3 and inserts the items 18 and 24 into the newly
constructed synonym leaf L9. The challenge is to ensure that the new model correctly identifies
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the data modified by the old model, including the trained data in the leaves (e.g., the data between
X3l and X3r ) and the new data between two sorted leaves (e.g., the data between X3r and X5l ).
According to Equation (2), the new model predicts the data between X3l and X3r in L3 due to
recording these data in L3 when the retraining begins. The new model correctly identifies these
modified data in the synonym leaves by checking the new SLT. However, the inconsistent state
occurs for the data betweenX3r andX5l (e.g., 24), since the new model may predict these data in L5

but overlook L3 and L9. To avoid such error, ROLEX checks the previous leaf (i.e., L3) to correctly
identify the modified data.

ROLEX doesn’t need to re-sort or move any data for retraining, since all data have been sorted
by the leaf tables during the runtime. No data are lost during retraining, since all leaves are either
retrained by the new model or being inserted into the new SLT.

ROLEX inserts the new data in the synonym leaves, which triggers retraining when the syn-
onym leaves consume half of (i.e., 27) the slots in the SLT. Before the retraining completes, SLT
still contains the space to create 27 more synonym leaves to insert new keys. After retraining, the
new models include new SLTs to accommodate more data. In our experiments, each leaf contains
16 slots and the model totally inserts 2,048 data before being retrained, while a model covers on
average 1,465 trained data. Hence, a retraining is triggered when inserting about 1× new data more
than the trained data, having a low retraining frequency. The speed of retraining models is much
faster than that of filling all synonym leaves. Moreover, ROLEX has a priority queue to identify
and train the model with almost full SLT to avoid the scenario where a model has insufficient slots
in SLT.

3.6 Discussion

Scalability. ROLEX distributes large datasets across multiple memory nodes by constructing mul-
tiple leaf regions. Specifically, 27 leaf regions form a group and each region contains at most 248

leaves to store data. A leaf group hence contains 255 leaves and is sufficient to construct a large
number of learned models. By training data in the same group, the learned models become effi-
cient to determine the location of a leaf via the leaf region (7 bits) and leaf numbers (48 bits) of
the entry in LT and SLT. Moreover, ROLEX constructs multiple groups to scale across multiple
memory nodes and becomes efficient to accommodate a large amount of data.

Durability and fault tolerance. Existing disaggregated memory systems enable the durabil-
ity and fault tolerance in different ways, such as the persistent memory [42, 53], battery backup
system [12], and logging writes [47], while achieving efficient performance. All these solutions are
orthogonal to ROLEX for efficient durability and fault tolerance.

Emerging heterogeneous technology. ROLEX benefits from the technology integrating
emerging accelerators and specialized hardware into the disaggregated memory nodes [17], due to
the sufficient computing resources. Moreover, the powerful network technology [34] incurs low
network penalty on remote data accessing. In this case, ROLEX needs a fallback mechanism to
avoid the lock contention among many compute nodes, which is our future work.

4 IMPLEMENTATION DETAILS

In this section, we present the implementation details of ROLEX in the disaggregated memory
systems, including the initial training and asynchronous retraining phases on the memory nodes,
and the one-sided search, insert, update, and delete operations on the compute nodes.

The typical memory pools [17, 46] have limited computing resources to conduct some non-
performance-critical operations. In ROLEX, the memory pool registers memory with huge pages
during the initialization phase to avoid the penalty of the cache misses in page translation. The
registered memory consists of the model and leaf regions to respectively maintain the learned
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Fig. 8. The pseudo-code of training models.

models and data. Existing RNIC hardware does not support remote memory allocation [56], and we
hence pre-allocate memory for the leaf regions to support our proposed atomic-leaf shift scheme.
We initially store the training data and the trained models on the memory nodes. The compute
nodes connect to the memory pool using the RDMA QC pairs and then synchronize the learned
index structures from the memory nodes to further conduct index operations.

4.1 Train Models

ROLEX stores all data in the leaves on the memory nodes and trains models based on these leaves.
Figure 8 presents the pseudo-code of the improved OptimalPLR training phase in ROLEX. The im-
proved OptimalPLR algorithm divides all data into non-overlapping subdatasets and ensures that
the linear regression model trained from each subdataset is smaller than the predefined prediction
error ϵ .

The improved OptimalPLR algorithm sequentially trains data, which adds each data into the
subdataset until identifying one data violating the linear distribution pattern of the subdataset. The
linear distribution pattern is determined by obtaining a linear regression model on the sorted keys
and logical positions, where the logical position is the order number of each data in the subdataset.
The data belong to the same linear distribution pattern, indicating that the distances between the
logical positions of these data and the positions calculated by the obtained linear regression model
are smaller than the predefined threshold. The subdataset successfully adds one data only when the
prediction error of the obtained model is smaller than ϵ . Otherwise, ROLEX stores the data of the
subdataset into the fixed-size leaves pre-allocated by the RNIC and maintains the leaf numbers of
the involved leaves into the leaf table (LT) for the model. All leaves have δ slots to accommodate
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Fig. 9. The pseudo-code of the search operation.

new data. Moreover, the improved OptimalPLR algorithm clears the subdataset and continues to
train the subsequent data with the same training mechanism.

The obtained models are stored in the model area pre-allocated by RNIC, and the model area is
efficiently shared within the compute pool. The compute nodes synchronize the learned indexes
from the model area and leverage the cached index structures to access and modify the remote data.

4.2 Search

Figure 9 presents the pseudo-code of the one-sided search operation on the compute nodes. To ac-
cess the value of the given key, the compute node leverages the cached learned models to calculate
the physical position and obtains the data from the remote memory nodes using one-sided RDMA
READ verbs.

Specifically, the compute node searches the cached learned index structure to determine the
model that covers the given key. In ROLEX, each key only corresponds to one model, since different
models cover different ranges of data, and the corresponding model is determined by comparing
the covered ranges. The model shows a prediction range for the given key using Equation (2) and
then translates these logical positions into physical ones by checking the leaf tables, where the
physical positions are calculated via Equation (3), i.e., multiply the leaf number by the leaf size
and add the start address of the first leaf in the leaf region. Finally, the compute node obtains
the remote data from the calculated physical positions using one-sided RDMA verbs and locally
searches the request data from the obtained data. At the same time, the compute node identifies the
newly constructed synonym leaves when obtaining synonym pointers from the predicted leaves.

The range query request SCAN (K ,N ) needs to search N data starting from K . In this case, the
compute node leverages the cached learned indexes to search the dataK like Algorithm 2 and reads
N subsequent data followed byK in the RDMA READ phase to deliver high-range query performance
due to one RTT.

4.3 Insert

Figure 10 presents the pseudo-code of the one-sided insert operation on the compute nodes, which
inserts a new item < K ,V > into the leaf predicted by the cached learned indexes in three phases,
as shown in Section 3.4.
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Fig. 10. The pseudo-code of the insert operation.

First, the compute node remotely reads the predicted leaves via one-sided Search() function.
The synonym leaves are not read in this phase, since the latest data is read in the second phase.

Second, the compute node locally searches the obtained leaves and determines which leaf to be
inserted (represented as Linser t ) by identifying the data range that covers the new key K . To avoid
the inconsistency issue, the compute node locks Linser t by changing the lock bit to 1 via CAS and
re-reads the data in Linser t and the synonym leaves in one doorbell batching for a small network
penalty. When the fetched leaves have insufficient available slots to accommodate new data, the
compute node fetches and increases the alloc_num of the leaf region and slotuse of SLT by 1 via
the RDMA FAA operation. In this case, the compute node constructs a new synonym leaf to insert
new data, and the new leaf is inserted into SLT in the third phase.

Third, the compute node inserts the new item < K ,V > into the leaf according to the data order
and writes the modified leaf into the memory nodes via the one-sided RDMA WRITE operation.
At the same time, the compute node inserts the newly constructed synonym leaf into SLT and
completes the insert operation by unlocking Linser t via CAS.

4.4 Update

Figure 11 presents the pseudo-code of the one-sided update operation on the compute nodes, which
updates the item of < K ,V >.

The compute node conducts the Search() operation to fetch the remote leaves to check if the
request K exists. When the Check () function returns NULL, the compute node returns false to
finish the update operation, since the target key does not exist in ROLEX. For the leaf (represented
as Lupdate ) containing the target key, the compute node changes the lock bit of Lupdate to 1 via
CAS and re-reads the data in Lupdate to guarantee the data consistency. Finally, the compute node
writes the new V into the memory nodes and unlocks Lupdate .
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Fig. 11. The pseudo-code of the update operation.

Fig. 12. The pseudo-code of the delete operation.

4.5 Delete

Figure 12 presents the pseudo-code of the one-sided delete operation on the compute nodes, which
removes the data matching with the given K .

Like the previous operations, the compute node conducts the following operations in sequence:
searches K from remote leaves, checks the existence of the given K, locks and re-reads the leaf
(represented as Ldelete ) containing K, and deletes the data in Ldelete . When Ldelete becomes empty
after removing K, the compute node processes the empty leaves in different ways according to
the types of the leaves. The empty trained leaf is not removed from the leaf table until the next
retraining to avoid the prediction error, while the non-retrained empty synonym leaf is removed
by deleting the leaf pointer. At the same time, the leaf numbers of the removed leaves are recorded
in the reallocating area for reuse.

4.6 Retrain

When constructing 27 synonym leaves, the compute node inserts the model pointer into CirQ to
wait for asynchronous retraining. At the remote side, the memory pool assigns retraining threads
to check the CirQ and concurrently retrain models in place, as shown in Figure 13.
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Fig. 13. The pseudo-code of asynchronous retraining models.

The memory pool sorts and retrains the data covered by the pending retraining model (repre-
sented as RM). Instead of moving all data into a new continuous area, the memory pool keeps all
data in place and constructs a new LT to re-sort the leaves in the old LT and SLT. Since all data
move within the assigned leaves following the proposed data movement constraints, the com-
pute nodes concurrently access and modify the leaves with consistency guarantees, as shown in
Section 3.5. After obtaining a new model trained from the new LT, the memory pool locks RM and
inserts the synonym leaves constructed during the retraining phase into the new SLT to guarantee
that the new model correctly identifies all leaves. Finally, the memory pool successfully retrains
the model by replacing the model pointer with the newly retrained one and unlocking RM .

5 PERFORMANCE EVALUATION

5.1 Experimental Setup

We run all experiments on a cluster with three compute nodes and three memory nodes, and each
server node is equipped with two 26-core Intel(R) Xeon(R) Gold 6320R CPUs @2.10Ghz, 188GB
DRAM, and one 100Gb Mellanox ConnectX-5 IB RNIC. The RNIC in each machine is connected
with a 100Gbps IB switch. We limit the computing resources utilization (i.e., one CPU core in our
testbed) for the memory node, which is reasonable because of the limited computing capability in
the typical memory pools [17, 46]. All compute nodes run with 24 threads by default.

Workloads. We use YCSB [50] with both uniform and Zipfian request distributions to evalu-
ate the performance, which contains six default workloads, including (A) update heavy (50% up-
dates), (B) read mostly (95% read), (C) read only, (D) read latest (5% insert), (E) short ranges (95%
range request), and (F) read-modify-write (50% modifications). Apart from these workloads, we also
evaluate the performance under write-intensive requests with two real-world and two synthetic
datasets [24]. Among them, Weblogs and DocID respectively contain 200 and 16 million key-value
pairs with different data distributions. The two synthetic datasets contain 100 million items and
respectively meet the normal and lognormal data distributions. We configure all workloads with
8B keys and pointers (i.e., referring to variable-length values) like existing schemes [24, 47] for
comprehensive evaluations.

Counterparts for comparisons. We compare ROLEX with four state-of-the-art distributed
KV stores. Specifically, FG [55] and Sherman [46] design RDMA-enabled B-link trees for the
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Fig. 14. The throughputs on various YCSB workloads.

disaggregated memory systems. We directly run the source codes of Sherman. Since FG is not
open source, we implement FG from scratch faithfully following the original design principles, as
well as caching the top-level nodes on compute nodes for better performance. We also adopt the
similar ideas of EMT-D [23] and XStore-D [47] on the disaggregated systems, i.e., using the limited
computing resources of memory nodes to show the performance of RPC-based schemes. EMT-D
transfers all requests to memory nodes via eRPC (RDMA-based RPC), while XStore-D accesses
read-only workloads via compute nodes and relies on memory nodes to process write-intensive
requests. We configure our implemented ROLEX with 16 slots in each leaf, as well as setting 16 as
the maximum model error to train PLR models for efficient system performance. We further lever-
age one CPU core on the memory node and disable the garbage collection and durability functions
for all counterparts to facilitate fair comparisons.

5.2 Overall Performance in YCSB

Figure 14 shows the throughputs on various YCSB workloads with both Uniform and Zipfian distri-
butions. In general, ROLEX achieves competitive performance with XStore-D on static workloads
while achieving higher throughput on dynamic workloads due to not relying on remote CPUs.

Static workload (YCSB C). On the static workloads, XStore-D and ROLEX efficiently read re-
mote data via one RDMA READ according to the prediction results of the learned models, which
achieve higher performance than FG and Sherman due to fewer RTTs caused by the local cache.
EMT-D achieves the lowest throughput, since the memory nodes have insufficient computing re-
sources to process the data requests. ROLEX achieves higher performance than XStore-D due to
the high model accuracy. Specifically, ROLEX leverages the OptimalPLR algorithm [49] to train
models according to the data distributions, which guarantees that all model errors are smaller
than the predefined threshold. However, XStore-D leverages the recurve model index scheme [24]
for training and fails to adaptively train models according to the data distribution. Some model
errors are large when failing to train sufficient models, causing a large prediction range and lower
performance than ROLEX in the read-only workloads.
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Fig. 15. The performance on write-only workloads.

Read-write workloads (YCSB A, B, D, F). For data modifications, both XStore-D and EMT-D
transfer data requests to the remote side and achieve low throughput, due to the limited CPU cores
on memory nodes. The performance of FG and Sherman is limited by the local cache due to the
large memory footprint of inner nodes. ROLEX achieves higher performance than other schemes
due to exploiting the learned local cache with the efficient one-sided RDMA WRITE. Specifically,
ROLEX outperforms FG, Sherman, EMT-D, and XStore-D by up to 2.1×, 1.7×, 2.8×, and 1.3×,
respectively, on workload A, since ROLEX directly updates the remote data without involving
remote CPUs. For workload D, 5% insertions are mixed with 95% searches, and ROLEX improves
the throughput by about 1.5× over other schemes. The reason is that the caches of other schemes
become invalid during insertion, while ROLEX leverages the stale cache to write data in synonym
leaves. We obtain similar observations on workloads B and F.

Range-query workload (YCSB E). Workload E contains 95% range query and 5% insert requests.
We observe that ROLEX improves the performance by 67% over other schemes, since all data are
kept sorted in the synonym leaves during insertion and the range queried data are fetched in a
doorbell batching by RDMA READ.

5.3 Performance in Various Scenarios

Apart from YCSB, we have similar observations on other representative workloads, including
Weblogs, DocID, Normal, and Lognormal. Figures 15 and 16 show the performance of different
schemes in various scenarios.

Throughput with intensive writes. Figure 15(a) shows the throughput of inserting different
numbers of data. As we constantly insert data, ROLEX achieves significant performance improve-
ments over other schemes. Specifically, ROLEX improves the insert throughput by up to 2.1×, 1.8×,
4.5×, and 4.3× over FG, Sherman, EMT-D, and XStore-D, respectively. The main reason is that the
local cache is fully exploited by ROLEX with one-sided RDMA operations, while the footprints of
inner nodes in tree-based schemes overflow the cache and the remote CPUs limit the write per-
formance of RPC-based schemes. Moreover, we evaluate the latencies of the insert operations for
different schemes, and the results are shown in Figure 15(b). We observe that ROLEX incurs low
latency since the stale cache identifies the leaf to be inserted according to the prediction results of
the learned models. For the monotonically increasing keys, ROLEX shows low performance when
multiple compute nodes contend for the same leaf lock, which is alleviated by sharing the leaf lock
among multiple threads of the same compute node.

Performance with hybrid read-writes. Figures 16(a) and 16(b) respectively show the through-
put and latency under various read/write ratios. The performance of EMT-D doesn’t decrease
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Fig. 16. The performance with various read/write scenarios.

much with the increasing write ratios, since the remote memory nodes suffer from the bottle-
neck of insufficient computing resources and achieve low performance even under intensive read
requests. XStore-D achieves high performance on read-heavy workloads, while significantly de-
creasing the performance as the write ratio increases, because XStore-D reads data with one-sided
RDMA while transferring most data requests to the remote side as the number of write requests
increases. ROLEX, FG, and Sherman achieve higher performance than other schemes due to not
being limited by the remote CPUs. ROLEX improves the throughput by 2.2× and 1.7× over FG and
Sherman, since the improvements mainly come from the efficient learned local cache. FG and Sher-
man have to spend multiple RTTs on retrieving the remote data when the inner nodes overflow
the limited local cache.

The latency of ROLEX is lower than that of RPC-based schemes in the disaggregated memory
systems, since the latency of accessing remote data comes from the network roundtrip and the in-
dex structure traversal. ROLEX traverses the cached learned indexes via the compute nodes, while
RPC-based systems traverse the index structures via the memory nodes. In the disaggregated mem-
ory systems, the compute nodes have sufficient computing resources to support high concurrent
access, while, however, the memory nodes have limited computing resources and fail to meet the
requirements for processing intensive index requests.

Performance with various data distributions. The data distributions impact the model accu-
racy of the learned indexes, which decrease the performance when the learned models deliver low
accuracy. Figure 17 shows the throughput on various workloads with different data distributions,
including Weblogs, DocID, Normal, and Lognormal. We observe that ROLEX achieves higher read
performance than XStore-D. The main reason is that the improved OptimalPLR algorithm trains
independent linear regression models with high accuracy according to the data distributions.

Performance on skewed workloads. The access patterns of requests may become skewed, e.g.,
reading/writing data in a certain range, rather than following the same data distributions as train-
ing. To show the effects of the skewed workloads, we define the Hotspot Ratio as the accessed
range divided by the range of the trained data, where a small hotspot ratio represents a large
skewness since a small data range is accessed. Figure 18(a) shows the read throughputs of dif-
ferent schemes on the skewed workloads. We observe that ROLEX delivers higher performance
than other schemes even with a small hotspot ratio, since ROLEX efficiently leverages the learned
models to access the remote data via the one-sided operations. However, the tree-based schemes
deliver low performance due to incurring multiple network roundtrips.

Figure 18(b) shows the write throughputs of different schemes on the skewed workloads. We ob-
serve that ROLEX delivers low performance with the small hotspot ratio, since different compute
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Fig. 17. The performance under various data distributions.

Fig. 18. The performance on skewed workloads.

nodes compete for the same data leaf. However, ROLEX increases the performance when the
hotspot ratio becomes large, since the improved OptimalPLR algorithm trains independent linear
regression models according to the data distributions, which alleviates the contentions for the data
leaves among different compute nodes. Therefore, the compute nodes conduct efficient one-sided
RDMA operations to access and modify the remote data.

For the extremely skewed workloads, the SLTs are completely filled and wait for the retraining
phase. In this case, ROLEX splits the model by copying model parameters and constructing new
SLTs to contain the skewed data, which is our future work.

5.4 Scalability Performance

Figure 19 shows the throughput of various schemes with different numbers of cores on the compute
nodes. We observe that the performance of EMT-D doesn’t increase when configuring more cores
on compute nodes, since the bottleneck of EMT-D is the remote CPUs of memory nodes, rather
than the compute nodes. The throughputs of other schemes increase with the number of cores
on compute nodes, as shown in Figure 19(a), because FG, Sherman, XStore-D, and ROLEX don’t
rely on the remote CPUs to process the read requests. However, the write performance of XStore-
D fails to scale out with the number of cores on compute nodes, as shown in Figure 19(b), since
XStore-D quickly runs out the available computing resources of the memory nodes. The read and
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Fig. 19. Scalability with various CPUs on compute nodes.

Fig. 20. In-depth analysis. We evaluate the latency and network bandwidth consumption when reading/writing

different numbers of data.

write performance of ROLEX increases with the increasing number of cores on compute nodes,
since different threads don’t block each other.

If the disaggregated memory system is not assumed, in our evaluation, EMT-D and XStore-D
achieve higher performance than other designs when configuring the memory nodes with more
than 20 CPU cores, since 20 CPU cores in memory nodes meet the requirements of processing
various index operations. However, it is worth noting that our article mainly focuses on the dis-
aggregated memory systems, which generally configure limited computing resources (i.e., much
lower than 20 CPU cores) on the memory nodes.

5.5 In-depth Analysis

We conduct three optimizations in ROLEX, including operation decoupling, one-sided indexing,
and asynchronous retraining, which efficiently support the system to obtain high performance.
We evaluate the efficiency of different optimizations in Figures 20 and 21.

Operation decoupling. An important insight of ROLEX is that we decouple the insertion and
retraining operations to enable the compute nodes to directly insert data into the memory pool,
which leverages the stale models to identify the new data. As shown in Figures 20 and 21, although
retraining incurs long latency, ROLEX achieves low latency to read and write remote data, since the
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Fig. 21. In-depth analysis. We evaluate the latency and network bandwidth consumption when inserting multiple

leaves, as well as the latency when training leaves.

operation decoupling moves the retraining phase out of the critical path and enables the compute
nodes to insert data without waiting for the retraining.

One-sided indexing. The compute nodes access remote data via one-sided indexing, which
incurs low latency and bandwidth consumption when operating on a small range of data, since
one-sided indexing efficiently exploits the benefits of RDMA doorbell batching. We observe that
ROLEX achieves high performance when respectively setting ϵ and δ to [8, 256] and [8, 128],
which achieves an efficient tradeoff between the accessing efficiency and the retraining frequency.
Specifically, ϵ and δ respectively represent the maximum prediction error and the leaf size. As
shown in Figures 20(a) and 21(a), a large ϵ provides a large prediction range, which consumes much
network bandwidth and latency to identify the requested data. ROLEX achieves high performance
when reading/writing 8 to 256 data, where the number of data is calculated by multiplying the size
and the number of the leaves. Moreover, the small δ provides small-size leaves, which frequently
triggers retraining since the leaves have insufficient slots to accommodate new data. However, as
shown in Figure 20(b), too large δ consumes much network bandwidth for modifying remote data,
since ROLEX reads/writes data in the granularity of a leaf.

Asynchronous retraining. ROLEX asynchronously retrains the models to construct new mod-
els and leaf tables, which increases the model accuracy to read and write few leaves. As shown
in Figure 21, the operations upon a small number of leaves significantly reduce the latency and
network bandwidth consumption. Figure 21(b) shows the retraining latency using a single CPU
core. We observe that training models and constructing leaf tables on 128 leaves consume about
300μs. Unlike conventional learned indexes [10, 14, 40], ROLEX doesn’t need to move or re-sort
any data during retraining, since all data are kept sorted during data modifications.

Co-routine optimization. The compute nodes use co-routines to conduct the index operations
of ROLEX to improve the throughput of handling requests. To demonstrate the efficiency of co-
routines, we initially load 1 million data on the memory nodes and train models on the data leaves,
and then respectively conduct 1 million search, update, insert, and delete index operations with
different numbers of co-routines on the compute nodes. Figure 22 shows the results of different
index operations when we constantly increase the number of co-routines from 1 to 16. From these
results, we observe that the throughput increases 2.3× on average when using multiple co-routines,
since multiple co-routines enable the compute nodes to concurrently process the data requests. We
also observe that the compute nodes achieve the highest performance when configuring eight co-
routines, and the performance gradually stops increasing when configuring more co-routines. The
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Fig. 22. The throughputs with different numbers of co-routines.

Fig. 23. The training overhead. ROLEX conducts the training operation offline to avoid the long latency and

asynchronously retrains a small number of data for the high model accuracy.

main reason is that the CPU on the compute node runs out before being able to process the massive
data requests and becomes the bottleneck of the entire system.

5.6 Overhead Analysis

In this section, we evaluate and analyze the overheads of ROLEX, including the training latency
and the memory consumption.

Training latency. Figure 23 shows the latency of training different numbers of data. We observe
that the training latency proportionally increases with the number of training data, since the com-
pute overhead comes from the training algorithm with O (N ) complexity, where N represents the
number of training data. On average, ROLEX spends 0.28μs on training one data to obtain the
trained models and store the data in the leaves. Unlike the training phase, ROLEX asynchronously
retrains the models in the CirQ without moving the data in the leaves, which consumes about
0.19μs on retraining one data on average.

Figure 24 shows the memory footprints of the metadata in different schemes, where the metadata
refer to the data that are required for caching. For example, the metadata consist of the inner nodes
for the tree-based schemes, while consisting of trained models and leaf tables for XStore-D and
ROLEX. We observe that the memory overheads in tree-based structures rapidly increase with
the increasing data, because many levels of inner nodes are constructed for indexing. Moreover,
the metadata overheads significantly increase when using small inner nodes due to requiring more
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Fig. 24. The memory footprints of the metadata. Tree-# represents that an inner node contains # keys.

Table 1. The Metadata Analysis for ROLEX

Number of Data 5 ∗ 106 1 ∗ 107 5 ∗ 107 1 ∗ 108 5 ∗ 108

Number of Models 5,153 10,283 51,111 101,936 526,236

Size of Models (MB) 0.0798 0.157 0.779 1.555 8.03

Size of LT (MB) 4.768 9.537 47.683 95.367 476.837

levels. Unlike tree-based structures, XStore-D and ROLEX leverage the linear regression models for
indexing, and each model only contains two parameters and is much smaller than the inner nodes.
As shown in Table 1, the memory overhead of ROLEX mainly comes from the LTs, which account
for 98% of the total memory consumption. These models can be fully cached by the compute nodes,
while the LTs can be fetched as needed when the limited cache fails to maintain all LTs.

6 RELATED WORK

The disaggregated memory systems. The promising disaggregated memory systems [29, 35, 36,
41, 45, 55] break a monolithic server into independent components to enhance the hardware
scalability, which achieves high resource utilization by scaling out different hardware compo-
nents [16, 52]. Different components communicate with each other via efficient RDMA techniques
[4, 5, 19, 39]. Existing academic studies attempt to bring the disaggregated memory systems into
practice via hardware designs [29, 30]. Clio [17] proposes a hardware-software co-designed dis-
aggregated memory system to equip each memory node with dedicated computing resources. Le-
goOS [36] proposes an OS model to manage disaggregated systems. Remote regions [1], LITE [43],
and Semeru [45] are used to efficiently manage the remote memory resources. AIFM [34] designs
a simple API for applications to use the remote memory. With the widely used NVM [31, 37, 51],
Clover [42] remotely manages the persistent memory with low costs. FORD [53] enables the dis-
aggregated memory systems to efficiently support transactions.

Learned indexes for storage systems. The learned indexes [24] leverage calculations to pre-
dict positions for the given keys. Prior designs focus on various scenarios to enable the learned
indexes to be widely used, including dynamically adapting to new data distributions [10, 14, 15],
concurrent systems [40], and LSM-based [9] and network-attached [47] KV stores. Motivated by
the learned indexes, some studies leverage machine learning models to construct learned systems;
e.g., DeepDB [18] proposes a learned DBMS, Tsunami [11] constructs learned multi-dimensional
indexes, and LISA [27] learns spatial data for high performance. Hai et al. [25] comprehensively
evaluate the performance of tree-based and learned indexes on disks, which provide valuable
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guidelines to design efficient disk-based indexes. DILI [28] constructs a novel distribution-driven
learned index tree for in-memory one-dimensional search keys.

Network-attached key-value stores. Due to the salient features of RDMA [4, 35, 39, 52], con-
structing RDMA-enabled in-memory key-value stores [23, 33, 47, 55] becomes efficient for dis-
tributed storage systems. Existing studies rely on two-sided RDMA verbs to process the data re-
quests [6, 21, 23]. However, such server-centralized designs suffer from the CPU bottleneck when
processing intensive requests [22, 47, 48] due to the poor computing capability of memory nodes.
Unlike them, one-sided RDMA enables compute nodes to directly access the remote data without
involving remote CPUs [13, 42, 56]. For the ordered KV stores, Cell [33], FG [55], and Sherman [46]
cache top-level nodes to reduce the number of RTTs based on B-link trees [26]. XStore [47] pro-
poses a learned cache to further reduce the network penalty, which incurs one RTT to access the
remote data. Moreover, FUSEE [38] efficiently disaggregates the metadata management to achieve
both high performance and resource efficiency. Unlike them, we design ROLEX for the disaggre-
gated memory systems to efficiently process various requests via one-sided RDMA operations.

7 CONCLUSION

This article proposes ROLEX, a scalable RDMA-oriented ordered key-value store using learned
indexes for the disaggregated memory systems. ROLEX decouples the insertion and retraining op-
erations, which enables the compute nodes to directly modify the remote data without retraining
models. Other compute nodes identify the newly modified data via the stale models with con-
sistency guarantees. ROLEX asynchronously retrains modes to improve the model accuracy. Our
evaluation results demonstrate that ROLEX achieves high performance on both static and dynamic
workloads in the context of the disaggregated memory systems. We have released the open-source
codes for public use in GitHub.
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