
I/O Stack Optimization for Efficient and Scalable
Access in FCoE-Based SAN Storage

Yunxiang Wu, Fang Wang, Yu Hua, Senior Member, IEEE, Dan Feng,Member, IEEE,

Yuchong Hu, Wei Tong, Jingning Liu, and Dan He

Abstract—Due to the high complexity in software hierarchy and the shared queue & lock mechanism for synchronized access, existing

I/O stack for accessing the FCoE based SAN storage becomes a performance bottleneck, thus leading to a high I/O overhead and

limited scalability in multi-core servers. In order to address this performance bottleneck, we propose a synergetic and efficient solution

that consists of three optimization strategies for accessing the FCoE based SAN storage: (1) We use private per-CPU structures and

disabling kernel preemption method to process I/Os, which significantly improves the performance of parallel I/O in multi-core servers;

(2) We directly map the requests from the block-layer to the FCoE frames, which efficiently translates I/O requests into network

messages; (3) We adopt a low latency I/O completion scheme, which substantially reduces the I/O completion latency. We have

implemented a prototype (called FastFCoE, a protocol stack for accessing the FCoE based SAN storage). Experimental results

demonstrate that FastFCoE achieves efficient and scalable I/O throughput, obtaining 1132.1K/836K IOPS (6.6/5.4 times as much as

original Linux Open-FCoE stack) for read/write requests.

Index Terms—Storage architecture, fiber channel over ethernet, multi-core framework

Ç

1 INTRODUCTION

IN order to increase multi-core hardware utilization and
reduce the total cost of ownership (TCO), many consoli-

dation schemes have been widely used, such as server
consolidation via virtual machine technologies and I/O
consolidation via converged network adapters (CNAs,
combine the functionality of a host bus adapter (HBA)
with a network interface controller (NIC)). The Fiber
Channel over Ethernet (FCoE) standard [1], [2], [3] allows
the Fibre Channel storage area network (SAN) traffic to
be consolidated in a converged Ethernet without addi-
tional requirements for FC switches or FCoE switches in
data centers. Currently converged Ethernet has the
advantages of availability, cost-efficiency and simple
management. Many corporations (such as Intel, IBM,
EMC, NetApp, Mallenox, Brocade, Broadcom, VMware,
HuaWei, Cisco, etc.) have released FCoE SAN related
hardware/software solutions. To meet the demands of
high-speed data transmission, more IT industries consider
high-performance FCoE storage connectivity when
upgrading existing IT configurations or building new
data centers. TechNavio [4] reports that the Global FCoE
market will grow at a Gross Annual Growth Rate (CAGR)
of 37.93 percent by 2018.

Modern data centers have to handle physical constraints
in space and power [1]. These constraints limit the system
scale (the number of nodes or servers) when considering
the computational density and energy consumption per
server [5]. In such cases, improving the scaling-up capacities
of system components would be a cost-efficient way. These
system capacities include the computing or I/O capacity of
individual computation node. Hence, an efficient and scal-
able stack for accessing remote storage in FCoE-based SAN
storage is important to meet the growing demands of users.
Moreover, scaling up is well suited to the needs of business-
critical applications such as large databases, big data analyt-
ics, as well as academic workloads and research.

The storage I/O stack suffers from the scaling-up pres-
sure in FCoE-based SAN storage systems with the following
features : (1) More cores. The availability of powerful, inex-
pensive multi-core processors can support more instances of
multi-threaded applications or virtual machines. This incurs
a large number of I/O requests to remote storage devices. (2)
Super high-speed network. The 40 Gbps Ethernet adaptors
support the access speed of end nodes in the scale of
40 Gbps. (3) Super-high IOPS storage devices. With the
increasing number of the connected end nodes, such as
mobile and smart devices, data center administrators are
inclined to improve the throughput and latency by using the
non-volatile memory (NVM) based storage devices. In such
cases, software designers need to rethink the importance and
role of software in scaling-up storage systems [6], [7], [8].

The Linux FCoE protocol stack (Open-FCoE) is widely
used in FCoE-based SAN storage systems. Through experi-
ments and analysis, we observe that Open-FCoE has a high
I/O overhead and limited I/O scalability for accessing the
FCoE based SAN storage in multi-core servers. For example,
with the Open-FCoE stack, even if we increase the number

� The authors are with the Wuhan National Lab for Optoelectronics, Key
Laboratory of Data Storage Systems (School of Computer Science and
Technology, Huazhong University of Science and Technology), Ministry
of Education of China, Wuhan 430074, China. E-mail: {yxwu, wangfang,
csyhua, dfeng, yuchonghu, tongwei, jnliu, hdnchu}@hust.edu.cn.

Manuscript received 20 Jan. 2016; revised 28 Oct. 2016; accepted 13 Mar.
2017. Date of publication 20 Mar. 2017; date of current version 9 Aug. 2017.
Recommended for acceptance by P. Sadayappan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2017.2685139

2514 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017

1045-9219� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

of cores submitting the 4 KB I/Os to a single remote target,
the total throughput is no more than 625 MB/s. This result
is only a small fraction of the maximum throughput
(around 1,200 MB/s) in 10 Gbps link. Access bottleneck
would worsen in the 40 Gbps link due to the limited I/O
scalability in the current Open-FCoE stack.

Lock contention has been considered as a key impedi-
ment to improve system scalability [9], [10], [11], [12]. Exist-
ing works focus on improving the efficiency of lock
algorithm (such as [10] and [12]) or reducing the number of
locks (such as MultiLanes [13] and Tyche [14]) to decrease
the synchronization overhead. However, the synchroniza-
tion problem still exists and leads to a limited scalability.
Tyche minimizes the synchronization overhead by reducing
the number of synchronization points (spin-locks) to pro-
vide scaling with the number of NICs and cores in a server.
But Tyche gains less than 2 GB/s for 4 KB request size with
six 10 Gbps NICs. Unlike existing solutions, we uses private
per-CPU structures & disabling the kernel preemption [15]
method to avoid the synchronization overhead. Each core
only accesses its own private per-CPU structures, thus
avoiding the concurrent accessing from the threads running
in other cores. On the other hand, when the kernel preemp-
tion is disabled, the current task (thread) will not be
switched out during the period of access to the private
structures, thus avoiding the concurrent access from the
threads in the same cores. This approach avoids the syn-
chronization overhead. Our scheme achieves 4,383.3 MB/s
throughput with four 10 Gbps CNAs for 4 KB read requests.

In this paper, we introduce a synergetic and efficient
solution that consists of three optimization schemes. We
have implemented a prototype (called FastFCoE, a protocol
stack for accessing the FCoE based SAN storage). FastFCoE
is based on the next-generation multi-queue block layer [11],
designed by Bjørling and Jens Axboe et al.. The multi-queue
block layer allows each core to have a per-core queue for
submitting I/O. For further I/O efficiency, FastFCoE has a
short I/O path both on the I/O issuing side and I/O com-
pletion side. In this way, FastFCoE significantly decreases
the I/O process overhead and improves the single core
throughput. For instance, when we use one core to submit
random 4 KB read (write) requests with all FCoE related
hardware offload capacities enabled, the throughput of the
current Open-FCoE stack is 142.25 (216.78) MB/s and the
average CPU utilization is 19.65 percent (13.25 percent),
whereas FastFCoE achieves 561.37 (415.39) MB/s through-
put and 15.66 percent (10.31 percent) CPU utilization.

Our contributions are summarized as follows:

1. We expose the three limitations of the current Open-
FCoE stack, which become I/O performance bottle-
necks. In the current Open-FCoE stack, (1) each I/O
request has to go through several expensive layers to
translate the I/O request to network frame, resulting
in extra CPU overhead and processing latency. (2) In
each of SCSI/FCP/FCoE layers, there is a global lock
to provide synchronized access to the shared queue
in multi-core systems. This shared queue & lock
mechanism would lead to the occurrence of LLC
cache miss frequently and limited I/O throughput
scalability, no more than 220 K IOPS. (3) In the I/O

completion path there are at least three context
switchings (doing the I/O completion work in FCP/
SCSI/BLOCK layer) to inform the I/O-issuing
thread of I/O completion. This can lead to additional
task scheduling and process overhead.

2. To support an efficient and scalable I/O for remote
storage access in the FCoE-based SAN storage in the
multi-core servers, we propose three optimization
strategies : (1) We use private per-CPU structures &
disabling the kernel preemption method to process
I/Os, which significantly improves the performance
of parallel I/O in multi-core servers; (2) We directly
map the requests from the block-layer to the FCoE
frames, which efficiently translates I/O requests into
network messages; (3) We adopt a low latency I/O
completion scheme, which substantially reduces the
I/O completion latency. We have implemented a
prototype (called FastFCoE). FastFCoE runs under
the block layer and supports all upper software com-
ponents, such as file systems and applications. More-
over, FastFCoE calls the standard network interfaces.
Hence, FastFCoE can use the existing hardware off-
load features of CNAs (such as scatter/gather I/O,
FCoE segmentation offload, CRC offload, FCoE Coa-
lescing and Direct Data Placement offload [16]) and
offer flexible use in existing infrastructures (e.g.,
adaptors, switches and storage devices).

3. We evaluate the three optimization schemes within
FastFCoE, compared with the Open-FCoE stack.
Experimental results demonstrate that FastFCoE not
only improves single core I/O performance in FCoE
based SAN storage, but also enhances the I/O scal-
ability with the increasing number of cores in multi-
core servers. For instance, when using a single
thread to submit 64 outstanding I/Os, the through-
put of the Open-FCoE is 156,529/129,951 IOPS for
4 KB size random read/write requests, whereas
FastFCoE is 286,500/285,446 IOPS, in 10 Gbps
link. Furthermore, to examine the I/O scalability
of FastFCoE, we bond four Intel 10 Gbps X520
CNAs as a 40 Gbps CNA in Initiator and Target
servers. FastFCoE can obtain up to 1122.1K/830 K
(for 4 KB size reads/writes) IOPS to a remote tar-
get and achieve the near maximum throughput
for 8 KB or larger request sizes.

The remainder of this paper is organized as follows. In
Section 2, we review the current implementation of the
Linux Open-FCoE protocol stack and analyse its perfor-
mance bottlenecks. In Section 3, we propose and present the
details of the three optimization strategies within our proto-
type (FastFCoE). Section 4 evaluates the single core I/O per-
formance and the I/O scalability of FastFCoE in a multi-
core server. We discuss the related work in Section 5 and
conclude our paper in Section 6.

2 REVISTING THE CURRENT FCOE I/O STACK

Open-FCoE project [17], the de-facto standard protocol stack
for Fibre Channel over Ethernet in different operating sys-
tems, is an open-source implementation of an FCoE initiator.
Fig. 1 shows the layered architecture of Linux Open-FCoE.

WU ETAL.: I/O STACKOPTIMIZATION FOR EFFICIENTAND SCALABLE ACCESS IN FCOE-BASED SAN STORAGE 2515

Each I/O has to traverse several layers from application to
hardware. The block layer allows applications to access
diverse storage devices in a uniform way and provides the
storage device drivers with a single point of entry from all
applications, thus alleviating the complexity and diversity of
storage devices. In addition, the block layer mainly imple-
ments I/O scheduling, which performs operations called
merging and sorting to significantly improve the perfor-
mance of system as a whole.

The SCSI layer mainly constructs SCSI commands with
I/O requests from the block layer. The Libfc (FCP) layer
maps SCSI commands to Fibre Channel (FC) frames as
defined in standard Fibre Channel Protocol for SCSI
(FCP) [18]. The FCoE layer encapsulates FC frames into
FCoE frames or de-encapsulates FCoE frames into FC
frames as FC-BB-6 standard [3]. In other words, the SCSI,
FCP and FCoE layer mainly translate the I/O requests from
BLOCK layer to FCoE command frames. The Ethernet
driver transmits/receives FCoE frames to/from hardware.
The main I/O performance factors in Open-FCoE stack can
summarized as follows: (1) I/O-issuing Side translates the
I/O requests into FCoE format frames; (2) I/O Completion

Side informs the I/O-issuing threads of the I/O comple-
tions; (3) Parallel Process and Synchronization implements
parallel access on multi-core servers. In this section, we
describe and investigate the current Open-FCoE stack
according to the above mentioned factors.

2.1 Issue 1: High Synchronization Overhead from
Single Queue & Shared Lock Mechanism

Fig. 2 shows the I/O requests transmission process in the
SCSI/FCP/FCoE layers of Open-FCoE stack when multiple
cores/threads submit I/O requests to the remote target in
multi-core systems. We describe it as follows :

1) The SCSI layer builds the SCSI command structure
describing the I/O operation from the block layer;
then acquires the shared lock when: (1) enqueueing
the SCSI command into the shared queue in the SCSI
layer; and (2) dispatching the SCSI command from
the shared queue in the SCSI layer to the FCP layer.

2) The FCP layer builds the internal data structure (FCP
request) to describe the SCSI command from the
SCSI layer and acquires the shared lock when
enqueueing the FCP request into the internal shared
queue in the FCP layer. Then, it initializes an FC
frame with sk_buff structure for the FCP request, and
delivers the sk_buff structure to the FCoE layer.

3) The FCoE layer encapsulates FC frame into FCoE
frame, and then acquires the shared lock when:
(1) enqueueing the FCoE frame; and (2) dequeueing
the FCoE frame to transmit the frame to network
with the standard interface dev_queue_xmit().

Obviously, the shared lock provides the synchronization
operations on the shared queue in multi-core servers. How-
ever, such single queue & shared lock mechanism in SCSI/
FCP/FCoE layer decreases the capacity of software scalabil-
ity in multi-core systems.

For the purpose of improving scalability, modern servers
employ cache coherent Non Uniform Memory Access (cc-
NUMA) in multi-core architecture, such as the one depicted
in Fig. 3 that corresponds to the servers in our work. In such
architecture, there are some representative features [11],
[19], [20], [21], [22], [23], [24] that cause significantly impacts
on the software performance, such as Migratory Sharing,
False Sharing and significant performance difference when
accessing local or remote memory. These features bring
challenges to the developers for developing multi-threaded
software in cc-NUMAmulti-core systems [25].

Fig. 1. Architecture of Linux Open-FCoE stack.

Fig. 2. Process of I/O requests transmission in the current Open-FCoE
stack.

Fig. 3. Multi-core architecture with cache coherent non-uniform memory
access (cc-NUMA).

2516 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017

We investigated the I/O scalability of Open-FCoE stack
with the mainstream cc-NUMA multi-core architecture. We
find that there are bottlenecks not only in the block layer [11]
but also in the SCSI/FCP/FCoE layers in terms of the I/O
scalability with the increasing number of cores. Specifically,
we describe the details of the problems as follows:

Single Queue and Global Shared Lock. As shown in Fig. 2, in
each of SCSI/FCP/FCoE layer, there is one shared queue
and lock. The lock provides coordinated access to the
shared data when multiple cores are updating the global
queue or list. A high lock contention can slow down the sys-
tem performance. The more intensive I/Os there are, the
more time it consumes to acquire the lock. This bottleneck
significantly limits the I/O scalability in multi-core systems.

Migratory Sharing. We illustrate this problem with two
cases [21]. (1) First, when one or more cores are to privately
cache a block in a read-only state, another core requests for
writing the block by updating its private cache. In this case,
the updating operation can lead to incoherence behavior
that the cores are caching an old value. In the coherence pro-
tocol, the shared cache (LLC, Last Layer Cache) forwards
the requests to all private caches. These private caches inval-
idate their copies of the block. This increases the load in the
interconnection network between the cores and decreases

performance when a core is waiting for coherence permis-
sions to access a block. (2) If no other cores cache the block,
a request has the negligible overhead of only updating the
block in the private cache. Unfortunately, the migratory
sharing pattern (i.e., the first case) generally occurs in the
shared data access in the current Open-FCoE stack. There
are several major sources of migratory sharing patterns in
the Open-FCoE stack: (i) shared lock, such as lock/unlock
before enqueue/dequeue operations in SCSI/FCP/FCoE
layers, and (ii) insert or remove the elements from a shared
queue or list. Each of SCSI/FCP/FCoE/block layer has one
or more shared queues or lists, as shown in Fig. 2.

In the remote memory access on NUMA system, the
remote cache line invalidation and the large cache directory
structures are expensive, thus leading to performance
decrease. The shared lock contention, which can frequently
result in these problems (such as Migratory sharing and
remote memory accesses), will be exacerbated [11] and adds
extra access overheads for each I/O in multi-core processors
systems. When multiple cores distributing on different
sockets issue intensive I/O requests to a remote target, the
shared queue & lock mechanism causes lots of shared data
access overheads due to the LLC cache misses and remote
memory access. As shown in Fig. 5, 4 KB size I/Os are sub-
mitted to a remote target with the current Open-FCoE stack.
The average number of cache misses per I/O is depicted in
Fig. 5a as a function of the number of cores that submit
I/Os simultaneously. With Open-FCoE, we observe that the
total throughput, as shown in Fig. 5b, does not increase too
much with the increasing number of cores, since each I/O
generates much more average LLC cache misses compared
with only one core, as shown in Fig. 5a.

2.2 Issue 2: Multi-Layered Software Hierarchy to
Translate I/O Requests to Network Frames

As shown in Fig. 1, there are multiple software layers
for each I/O to traverse from the block layer to network
hardware. This layered architecture in Open-FCoE stack
increases the CPU overhead and latency for the remote tar-
get access in FCoE-based SAN storage.

Asmentioned in Section 2, for each I/O operation the con-
sumed time in the I/O issuing side mainly consists of three
components, (1) I/O scheduling, (2) I/O translating and
(3) frames transmitting. To observe the breakdown of

Fig. 4. FastFCoE architecture in multi-core server. The remote FCoE
SAN storage target is mapped as a block device.

Fig. 5. Average LLC cache misses per I/O and throughput (IOPS) com-
parison between original Linux Open-FCoE and our FastFCoE. 4 KB
size random I/Os are submitted as a function of number of cores issuing
I/Os in 10 Gbps link. The cores are distributed uniformly in a 2-socket
system.

Fig. 6. Mapping from I/O requests to network messages in FastFCoE.

WU ETAL.: I/O STACKOPTIMIZATION FOR EFFICIENTAND SCALABLE ACCESS IN FCOE-BASED SAN STORAGE 2517

software latency in the I/O issuing side within Open-FCoE
stack, we measured the consumed time of each component
when using a core to issue a single outstanding I/O request,
as shown in Fig. 7. We observe that in the Open-FCoE stack
the I/O translating consumes a large fraction of execution
time in the I/O issuing side. The execution times of the I/O
scheduling : I/O translating : frames transmitting are 2ms : 5ms :
2ms, respectively. That means that the implementing in
SCSI/FCP/FCoE layers takes a long time to translate an I/O
request into FCoE frame format. For example, the main func-
tion of SCSI layer is to allocate and initialize a SCSI command
structure with the request structure. In the FCP layer, the
internal structure is allocated and initialized with the SCSI
command; then the FC format frame is allocated and initial-
ized, such as copying the SCSI CDB to the frame. Extra costs
are consumed in SCSI/FCP/FCoE layers, such as SCSI com-
mand, FCP internal structure related operations and copying
the SCSI CDB to the frame. We classify all the extra over-
heads into two types, the inter-layer and intra-layer over-
heads in order to clearly describe this issue of multi-layered
software hierarchy in the current Open-FCoE stack.

2.3 Issue 3: Multiple Context Switchings in the I/O
Completion Side

A context switch (also sometimes referred to as a process
switch or a task switch) is the switching of the CPU from one
task (a context or a thread) to another. When a new process
has been selected to run, two basic jobs should be done [15] :
(1) switching the virtualmemorymapping from the previous

processs to that of the new process. (2) switching the proces-
sor state from the previous processs to the current one. This
involves saving and restoring stack information, the proces-
sor registers and any other architecture-specific state that
must bemanaged and restored on a per-process basis.

Whenever a new context (interrupt or thread) is intro-
duced in the I/O path, it can cause a polluted hardware
cache and TLBs. And significant scheduling delays are
added, particularly on a busy CPU [7], [8]. However, it is
not trivial to remove these contexts in the I/O completion
path since these contexts are employed to maintain system
responsiveness and throughput. In this section, we investi-
gate the path of I/O completion side and show two main
types of latencies in the I/O completion path: task schedul-
ing latency and the execution time for completion work in
FCP/SCSI/BLOCK layer.

As we know, the block subsystem (block layer) schedules
I/O requests by queueing them in a kernel I/O queue and
placing the I/O-issuing thread in an I/Owait state. Upon fin-
ishing an I/O command (receiving a correct FCoE FCP_RSP
packet [18]), there are at least three scheduling points to
inform the I/O-issuing thread of I/O completion in Open-
FCoE stack, as shown fromFigs. 8a, 8b, 8c, and 8d. The current
Open-FCoE stack is based on the standard network interface
to receive/transmit FCoE packets from/to a network
link. When receiving an FCoE frame, the adaptor generates a
MSI-x interrupt to inform the core to call the interrupt service
routines (ISRs) for implementing the pre-processing work,
mainly including FCoE packets receiving and enqueueing as
shown in Fig. 8a. Then, the fcoethread thread (as shown in
Fig. 8b) is waiting for being scheduled to do the processing
work (mainly including dequeuing the received FCoE packets,
FCoE FCP_RSP packet checking and FCP layer completion
work) and raise the software interrupt (BLOCK_SOF-
TIRQ [15]). After that, the software interrupt (BLOCK_SOF-
TIRQ) handler (as shown in Fig. 8c) is scheduled to do the
post-processing work (mainly including SCSI and BLOCK layer
completion work) and try to wake up the I/O-issuing thread
(waiting on this I/O completion, as shown in Fig. 8d). The
I/O-issuing thread is later awakened to resume its execution.

To observe the breakdown of software latency in the I/O
completion path within Open-FCoE stack, we measured the
execution times of pre-processing work : processing work : post-
processing work for each I/O completion when using a core
to issue a single outstanding I/O request (4 KB size read).
The execution times of pre-processing work : processing work :
post-processing work for each I/O completion are 4 us : 4 us :
7 us, respectively.

What‘s more, we recorded the total number of task
switchings, average task scheduling latencies, task running

Fig. 7. Software overhead comparison on I/O-issuing side between origi-
nal Linux Open-FCoE and our FastFCoE. For each I/O operation the
consumed time in the I/O issuing side consists of three components, (1)
I/O scheduling, (2) I/O translating and (3) frames transmitting. Setup:
Direct I/O, noop I/O scheduler, 512 Byte size random read, iodepth=1.

Fig. 8. I/O completion scheme comparison of original Linux Open-FCoE
((a) to (d)) and our FastFCoE ((x) to (z)). The major function of each con-
text in the I/O completion path is listed in Tables 1 and 3, in original Linux
Open-FCoE and our FastFCoE, respectively.

TABLE 1
Major Function of Each Context in the I/O Completion

Side, in Original Linux Open-FCoE

Contexts Major functions

MSI-x IRQ FCoE packets receiving and enqueueing
fcoethread dequeuing, FCoE FCP_RSP packet

checking and FCP layer completion
work

BLOCK_SOFTIRQ SCSI and BLOCK layer completion work

2518 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017

time and the number of I/Os in the I/O completion path
when using a core to issue a single outstanding I/O request
(4 KB size read), as shown in Table 2. For example, during
10 seconds, 49,472 read requests are implemented. The
fcoethread spends 1,371,556 ms time to process the received
FCoE frames. There are 50,283 context switchings for CPU
(core) from other context to fcoethread context. The average
scheduling delays for fcoethread and I/O issuing contexts
are 5 and 17 ms, respectively. That means that in the I/O
completion side there are average 22 ms time (not including
the average scheduling delay of BLOCK_SOFTIRQ context)
consumed due to context scheduling.

3 I/O STACK OPTIMIZATION FOR ACCESSING THE

FCOE SAN STORAGE

The analysis in Section 2 shows that the current I/O stack
has two challenges: (1) How to decrease the processing
overhead for each I/O request? (2) How to improve system
scalability in terms of throughput with the increasing num-
ber of cores? These problems, which become the bottlenecks
in high-performance FCoE-based SAN storage, should be
considered along with the evolution of high-performance
storage device and high-speed network. In this section, we
propose three optimization schemes within our prototype,
which optimize the I/O performance with the following fea-
tures : (1) significantly avoiding the synchronization over-
heads, (2) efficiently translating I/O requests into FCoE
frames, (3) substantially mitigating the I/O completion
overhead in the I/O completion path.

First, we describe the architecture and the overall pri-
mary abstractions of our prototype (called FastFCoE, a
FCoE protocol stack for accessing the FCoE based SAN stor-
age), as shown in Fig. 4. When we design the FastFCoE, one
of our goals is to obtain the efficiency without the cost of
decreasing compatibility and flexibility. (1) Our FastFCoE
fully meets the related standards such as FC-BB-6 and FCP.
(2) Our FastFCoE uses the standard software interfaces and
needs not to revamp the upper and lower layer in software.
(3) The salient feature of FastFCoE is simple to use and
tightly integrated with existing Linux systems without the
needs of specific devices or hardware features.

At the top of the architecture, there are multiple cores that
implement the application threads and submit I/O requests
to the block layer, which provides common services that
valuable to applications and hides the complexity (and
diversity) of storage devices. Our design is based on the
multi-queue block layer [11] that allows each core to have a
per-core queue for submitting I/O. Our proposed FastFCoE
is under the multi-queue block layer and consists of three
key components: FCoE Manager, Frame Encapsulation and

Frame Process. The network link layer is under the FastF-
CoE. The frames from FastFCoE are transmitted to the net-
work device (CNA, converged network adaptor) by the
standard interface dev_queue_xmit(). The standard interface
netif_receive_skb() processes the received frames from net-
work. All the hardware complexity and diversity of CNAs
are transparent to FastFCoE. In addition, almost all modern
converged network adaptors have multiple hardware Tx/
Rx queues for parallel transmitting/receiving, as shown in
Fig. 4. For instance, the Intel X520 10 GbE converged network
adaptor has 128 Tx queues and Rx queues.

3.1 Optimization 1 : Using the Private Per-CPU
Structures & Disabling Kernel Preemption
Method to Avoid the High Synchronization
Overheads

Through experiments and analysis in Section 2.1, we find
the shared queue & lock mechanism in Open-FCoE would
lead to the occurrence of LLC cache miss frequently and has
a high synchronization overhead, which limits I/O through-
put scalability in modern cc-NUMAmulti-core systems.

To fully leverage parallel I/O capacity with multiple
cores, we implement private per-CPU structures to process
I/Os instead of the global shared variables accessing, such
as single shared queue & lock mechanism. As shown in
Figs. 4 and 6, each core has its own private resources, such
as queue,1 Exchange Manager, CRC Manager, Rx/Tx ring,
etc. We do not need to concern for the concurrent accessing
from the threads running in other cores. For example, the
Exchange Manager (as shown in Fig. 6) uses private per-
CPU variables to manage the Exchange ID2 respectively
for each I/O. During the ultra-short period of accessing the
private per-CPU data, the kernel preemption is disabled
and the current task (thread) will not be switched out. We
also do not need to concern for the concurrent accessing
from the threads running in the same core. This method
avoids the synchronization overhead and significantly
improves the parallel I/O capacity.

Disabling kernel preemption might cause a deferral of
task scheduling and lengthen the latency in the current run-
ning thread. However, compared with the single queue &
lock mechanism in existing Linux FCoE stack, there are sev-
eral benefits to use per-CPU data. First, our scheme removes
the locking requirement for accessing the shared queue.
Second, per-CPU data is private for each core, which greatly
reduces the cache invalidation (detailed in Section 2.1

TABLE 2
Total Number of Task Switchings, Task Scheduling Latencies,

Task Running Time and Number of I/Os in the I/O
Completion Side with Our Open-FCoE

Task Runtime
(ms)

Switchings Average
delay (ms)

Total
I/Os

fcoethread 1,371,556 50,283 5
49,472

I/O issuing 1,388,398 50,285 17

TABLE 3
Major Function of Each Context in the I/O Completion

Side, in Our FastFCoE

Contexts Major functions

MSI-x IRQ FCoE packets receiving and enqueueing
fastfcoethread dequeuing, FCoE FCP_RSP packet

checking, FCoE layer and BLOCK layer
completion work

1. Multi-queue block [11] layer allows each core to have a per-core
queue for submitting I/O.

2. A unique identifier in Fibre Channel Protocol-SCSI (FCP) [18] for
each I/O request.

WU ETAL.: I/O STACKOPTIMIZATION FOR EFFICIENTAND SCALABLE ACCESS IN FCOE-BASED SAN STORAGE 2519

Migratory sharing). Moreover, our FastFCoE is designed for
Linux operating system, which is not a hard real-time oper-
ating system and makes no guarantees on the capability to
schedule real-time tasks [15]. Each core has its own private
per-CPU structures, thus causing extra spatial overhead for
duplicate data in the software layer. Due to the slight spatial
overhead (768 Byte private per CPU structures for one core),
it has a slight impact on entire system performance. In fact,
the per-CPU structure & disabling preemption is commonly
used in the Linux kernel 2.6 or newer versions.

As shown in Fig. 5, 4 KB size random I/Os were submit-
ted to a remote target, to compare our method (FastFCoE)
with Open-FCoE. The average number of cache misses per
I/O and the total throughput are depicted in Figs. 5a and 5b,
respectively, as a function of the number of cores that submit
I/Os simultaneously. As shown in Fig. 5b, we observe that
the throughput with Open-FCoE does not increase too much
with the increasing number of cores, whereas our method
(FastFCoE) has a significant improvement (achieves the near
maximum throughput in 10 Gbps link). Our method (FastF-
CoE) generates much less average LLC cache misses per
I/O, comparedwith Open-FCoE, as shown in Fig. 5a.

3.2 Optimization 2 : Directly Mapping I/O Requests
into FCoE Frames

As mentioned in Section 2.2, due to the layered software
architecture in the current Open-FCoE stack, the extra inter-
layer and intra-layer cost are consumed to translate I/O
requests to FCoE frames.

Instead of SCSI/FCP/FCoE layers in the current Open-
FCoE stack, we directly initializes the FCoE frame with the
I/O request from the block layer. Fig. 6 shows the mapping
from I/O request to network messages. As shown in Fig. 6,
the I/O request from the block layer consists of several seg-
ments, which are contiguous on the block device, but not
necessarily contiguous in physical memory, depicting the
mapping between a block device sector region and some
individual memory segments. Hence, the FCP_DATA frame
payloads (the transferred data) are not contiguous in physi-
cal memory and the length of FCP_DATA frame payloads is
almost larger than the FCoE standard MTU (adapter maxi-
mum transmission unit). On the other hand, the hardware
function, scatter/gather I/O [26], directly transfers themulti-
ple non-liner memory segments to the hardware (CNA) by
DMA. In addition, FCoE segmentation offload (FSO) [16] is a
technique for reducing CPU overhead and increasing the
outbound throughput of high bandwidth converged net-
work adaptor (CNA) by allowing the hardware (CNA) to
split a large frame into multiple FCoE frames. To reduce the
overhead and support these hardware capacities, we use the
linear buffer of the sk_buff structure to represent the header
of FCoE FCP_DATA frame and the skb_shared_info structure
to point to these non-linear buffers to present the large trans-
ferred data. These non-linear buffers include request seg-
ments in memory pages and the CRC, EOF (not shown in
Fig. 6) fields in FCP_DATA frame. What‘s more, to improve
system efficiency, we use the pre-allocation method that
obtains a special memory page to manage the CRC and EOF
allocation for each core. The FCoE FCP_CMND frame3

encapsulation is similar with FCP_DATA frame, but only
uses the linear buffer of the sk_buff structure to depict the
frame. Moreover, FastFCoE also supports Direct Data Place-
ment Offload (DDP) [16], which saves CPU overhead by
allowing the CNA to transfer the FCP_DATA frame payload
(the transferred data) to the request memory segments.

This optimization scheme (directly mapping the requests
from the block-layer to the FCoE frames) cuts the extra
inter-layer and intra-layer cost, and significantly reduces
the software latency in the I/O issuing side. Fig. 7 presents
the software latency comparison between Open-FCoE and
our scheme (FastFCoE) in the I/O issuing side, when using
a core to issue a single outstanding I/O request. Our FastF-
CoE is effective in reducing the software latency in the I/O
issuing side (reduction to 66.67 percent). The source of the
improvement is from the high-efficiency of I/O translating.
With our scheme, 2ms time is consumed in the I/O translat-
ing and 3ms is saved, as shown in Fig. 7.

3.3 Optimization 3 : Eliminating the I/O Completion
Side Latency

As mentioned in Section 2.3, there are two main types of
latencies in the I/O completion side, task scheduling latency
and the execution time for completion work in FCP/SCSI/
BLOCK layer. Our goal is not only to eliminate the number
of context switchings in the I/O completion path, but also
to reduce the total execution time in these contexts. In this
section, we briefly introduce the idea.

For direct-attached SCSI drive (based on SCSI layer) devi-
ces, the software interrupt (BLOCK_SOFTIRQ) context is
necessary to do the deferred work (SCSI layer and BLOCK
layer completion work), which avoids system lockdown
caused by heavy ISRs [8]. But, network adaptors use the
NAPI mechanism [26] to avoid the high overhead of ISRs.
We point out that for network adaptors the BLOCK_SOF-
TIRQ context is redundant due to the fcoethread context,
which can directly do the post-processingwork. So we remove
the BLOCK_SOFTIRQ context in the I/O completion path.
The post-processingwork is directly done by fcoethread context
(in FastFCoE we name it as fastfcoethread, as shown in Fig. 8).
Furthermore, in the consideration of Optimization 2 (the
SCSI/FCP/FCoE layers are replaced by one layer), the exe-
cution time of each I/O completion is reduced significantly
due to the deletion of the extra completion work, such as
SCSI and FCP layer completion work. In FastFCoE the total
execution time of processing work + post-processing work for
each I/O completion is 5 ms, whereas in Open-FCoE the total
execution time of processing work + post-processing work for
each I/O completion is 11 ms, when using a core to issue a
single outstanding I/O request (4 KB size read).

This method not only reduces the total execution time of
processing and post-processing work, but also removes the
extra context switching to avoid the extra context schedul-
ing delays. The total number of task switchings, average
task scheduling latencies, task running time and number of
I/Os in the I/O completion path were also recorded when
using a core to issue a single outstanding I/O request (4 KB
size read), as shown in Table 4. During 10 seconds, our
method (FastFCoE) spends 736,152 ms time to do all the I/O
completion works for 53,004 read requests (as shown in
Table 4), whereas Open-FCoE spends 1,371,556 ms time to3. Representing the data delivery request.

2520 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017

do the partial I/O completion works for 49,472 read
requests (as shown in Table 2). However, the average sched-
uling delays with FastFCoE are 4 and 6 ms for fcoethread and
I/O issuing contexts respectively, whereas with Open-FCoE
are 5 and 17 ms (as shown in Table 2). The major source of
the results is due to the fact that there is only one context
(fastfcoethread) to implement the fewer completion works in
our FastFCoE stack rather than the two contexts (fcoethread
and BLOCK_SOFTIRQ) in Open-FCoE stack.

4 EXPERIMENTAL EVALUATION

In modern data centers, there are two common deployment
solutions for servers, including traditional non-virtualized
servers (physical machines) and virtualized servers (virtual
machines). In this section, we performed several experi-
ments to test the overall performance of our prototype sys-
tem (FastFCoE). The experimental results4 answer the
following questions under both non-virtualized and virtual-
ized systems: (1) Does FastFCoE consume less process over-
head (per I/O request) than standard Open-FCoE stack
under the different configurations of Process Affinity and
IRQ Affinity [32], [33], which are related to I/O perfor-
mance? (2) Does FastFCoE achieve better I/O scalability
with the increasing number of cores on multi-core platform?
(3) How is the performance of FastFCoE influenced under
different degrees of CPU loads? Before answering these
questions, we describe the experimental environment.

4.1 Experimental Method and Setup

To understand the overall performance of our FastFCoE, we
evaluated the main features with two micro-benchmark
FIO [27] and Orion [28]. FIO is a flexible workload genera-
tor. Orion is designed for simulating Oracle database I/O
workloads and uses the same I/O software stack as Oracle
databases. In addition, we analyzed the impact of through-
put performance under different degrees of CPU loads with
real world TPC-C [29] and TPC-E [30] benchmark traces.

We performed the Open-FCoE stack in the Linux kernel as
baseline to carry out the comparisons. Our experimental plat-
form consisted of two systems (initiator and target), con-
nected back-to-back with multiple CNAs. Both initiator
server and target server were configured with Dell Power-
Edge R720, Dual Intel Xeon Processor E5-2630 (6 cores, 15MB
Cache, 2.30 GHz, 7.20 GT/s Intel QPI), 128 GB DDR3, Intel
X520 10 Gbps CNAs, with hyperthreading capabilities
enabled. The Open-FCoE or FastFCoE stack ran in the host or

virtual machines with CentOS 7 (3.13.9 kernel). The target
systemwas based on the modified Linux I/O target (LIO) 4.0
with CentOS 7 (3.14.0 kernel) and used 40 GB RAM as a disk.
Note that we used RAMbased disk and back-to-back connec-
tion only to avoid the influences from network and slow tar-
get system. Hardware Direct Data Placement offload [16], the
hardware offload functions for FCoE protocol, was enabled
when the request sizewas equal to or larger than 4 KB.

4.2 Performance Results

First, we performed FIO tool to compare the single core per-
formance of FastFCoE with Open-FCoE in terms of the aver-
age throughput, CPU overhead and latency by sending a
single outstanding 512 B I/O with a single core. Then, we
evaluated the I/O scalability with the increasing number of
concurrent I/Os using Orion and the I/O scalability with
the increasing number of cores submitting I/Os using FIO.
Finally, we used two benchmark traces (TPC-C [30] and
TPC-E [31]) to evaluate throughput performance between
FastFCoE and the Open-FCoE under different degrees of
CPU loads.

4.2.1 Single Core Evaluation

In this section, we modify the tunning parameters for
Process Affinity5 and IRQ Affinity6 [26] to evaluate the I/O

TABLE 4
Total Number of Task Switchings, Scheduling Latencies,

Running Time and Number of I/Os in the I/O
Completion Side with Our FastFCoE

Task Runtime
(ms)

Switchings Average
delay (ms)

Total
I/Os

fastfcoethread 736,152 53,890 4
53,004

I/O issuing 1,608,798 53,891 6

Fig. 9. Six typical configurations for process affinity and IRQ affinity [26]
in our prototype (Dual Intel Xeon Processor E5-2630). For example, the
configuration (a) means: The application runs and submits I/O requests
in core 0, on NUMA node 0. The MSI-x interrupt[16] is handled by core
2, on NUMA node 0. The converged network adaptor (CNA) is on the
other NUMA node, NUMA node 1.

4. In this section, each experiment runs 10 times. The best and worst
results are discarded to remove outliers. The remaining 8 results are
used to calculate the standard deviation and average values.

5. Processor affinity, or CPU pinning enables the binding and
unbinding of a process or a thread to a central processing unit (CPU) or
a range of CPUs, so that the process or thread will execute only on the
designated CPU or CPUs rather than any CPU.

6. IRQs have an associated ”affinity” property, smp_affinity, which
defines the CPU cores that are allowed to execute the ISR for that IRQ.

WU ETAL.: I/O STACKOPTIMIZATION FOR EFFICIENTAND SCALABLE ACCESS IN FCOE-BASED SAN STORAGE 2521

performance of a single core under the six typical configura-
tions, as shown in Fig. 9. For example, the configuration of
Fig. 9ameans: The application runs and submits I/O requests
in core 0, on NUMA node 0. The MSI-x interrupt [16] is han-
dled by core 2,7 on NUMA node 0. The converged network
adaptor is on the other NUMAnode, NUMAnode 1.

The throughput, CPU usage and latency are measured by
issuing a single outstanding 512 B I/O with a single core in
the non-virtualized and virtualized systems with 10 Gbps
CNA, respectively. As shown in Fig. 10, our FastFCoE has a
significant improvement of throughput performance than
Open-FCoE for all of the six configurations (as shown in
Fig. 9). In addition, for both of Open-FCoE and FastFCoE,
we observe that throughput performance is better when the
core submitting I/Os is on the same NUMA node with the
adapter (CNA) (the configuration c, d and f, as shown in
Fig. 10) than others (the configuration a, b and e, as shown
in Fig. 10).

Rather than the layered architecture in Open-FCoE,
which results in the extra inter-operations and intra-
operations to translate the I/O requests to FCoE format
frames, FastFCoE directly maps the requests from the
block-layer to the FCoE frames. What is more, FastFCoE
uses a new I/O completion scheme, which avoids the extra
context switching (BLOCK_SOFTIRQ context) overhead
and reduces the execution overhead (due to the deletion of
the extra completion work). As a result, FastFCoE has less
CPU overhead for each I/O request than Open-FCoE.
Fig. 11 shows the average CPU utilization for Open-FCoE
and FastFCoE, with the six configurations in the non-vir-
tualized and virtualized systems. For the non-virtualized
system, the average CPU utilization of FastFCoE has a
decrease of 3:15 � 6:74 percent and 6:05 � 8:34 percent for
read and write, respectively. For the virtualized system, the
average CPU utilization of FastFCoE has a decrease of
2:52 � 4:47 percent and 2:26 � 2:28 percent for read and
write, respectively. The hareware capacity of DDP [16] is
disabled in 512 B read operation, thus requiring higher CPU
overhead than write operation.

The latency is measured as the time from the application,
through the kernel, into the network. Our FastFCoE has a
short I/O path both on the I/O issuing side and I/O com-
pletion side. Hence, FastFCoE has a smaller average latency
than Open-FCoE. Fig. 12 shows the average latency for
Open-FCoE and FastFCoE, with the six configurations in
the non-virtualized and virtualized systems. For the non-

virtualzied system, the average latency of FastFCoE has a
decrease of 7:81 � 22:78 and 16:38 � 18:84 microseconds for
read and write, respectively. For the virtualized system, the
average latency of FastFCoE has a decrease of 2:55 � 20:88
and 12:88 � 17:75 microseconds for read and write, respec-
tively. The write operation causes higher complexity in FCP
protocol [18] than read operation. Therefore, the write oper-
ation has a larger latency than read operation.

4.2.2 I/O Scalability Evaluation

The improvements of the I/O scalability with the increasing
number of concurrent I/Os and the increasing number of
cores submitting I/Os are important to I/O subsystem. In
this section, we performed FIO and Orion [28] to evaluate
the I/O scalability of FastFCoE in the non-virtualized and
virtualized systems, respectively.

We performed a single Orion instance to simulate Online
transaction processing (OLTP) and Decission support sys-
tem (DSS) application scenarios. OLTP applications generate
small random reads andwrites, typically 8 KB. Such applica-
tions usually pay more attention to the throughput in I/Os
Per Second (IOPS) and the average latency (I/O turn-around
time) per request. These parameters directly determine the
transaction rate and transaction turn-around time at the
application layer. DSS applications generate random 1 MB
I/Os, stripped over several disks. Such applications process
large amounts of data, and typically examine the overall
data throughput inMegaBytes per second (MB/S).

We evaluated the performance in OLTP (as shown in
Fig. 13) and DSS (as shown in Fig. 14) application scenarios
with 50 percent write requests on FastFCoE and Open-FCoE
in 10 Gbps Ethernet link, respectively. With the increasing
number of concurrent I/Os, the I/Os become more inten-
sive. Since FastFCoE has a better scalability than Open-
FCoE in both non-virtualied and virtualied systems, the

Fig. 10. Throughput is measured by issuing a single outstanding 512 B I/
O with a single core under the six configurations, as shown in Fig. 9.

Fig. 11. CPU utilization is measured by issuing a single outstanding 512
B I/O with a single core under the six configurations as shown in Fig. 9.

Fig. 12. Average I/O latency is measured by issuing a single outstanding
512 B I/O with a single core under the six configurations as shown in
Fig. 9.

7. When receiving an FCoE frame, the adaptor generates a MSI-x
interrupt to inform the core 2 to receive the FCoE frame.

2522 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017

performance gap in terms of throughput and latency
becomes larger when using more concurrent I/Os. For
OLTP, the average throughput (IOPS) of FastFCoE outper-
forms Open-FCoE by 1.58X and 1.63X at most, in the non-
virtualied and virtualied system, respectively. At the same
time the average latencies have 37.0 and 36.1 percent reduc-
tion, respectively. For DSS, the throughput of FastFCoE out-
performs Open-FCoE by 1.63X and 1.55X at most, in the
non-virtualied and the virtualied system, respectively. The
reason of the results is that FastFCoE has smaller process
overheads than Open-FCoE.

One challenge for storage I/O stack is the limited I/O
scalability for small size requests in multi-core systems [14].
To show the scalability behavior for small size requests, we
performed FIO to evaluate the I/O scalability with the
increasing number of cores submitting I/Os. We set the per-
mitted number of cores with 100 percent utility and bound
one thread for each permitted core.

Fig. 15 shows the total throughput by submitting 64 out-
standing asynchronous random 512 B, 4 and 8 KB size
requests, respectively, with different numbers of cores, with
10 Gbps CNA. For the non-virtualized system, when using

one core, our FastFCoE shows higher throughput than
Open-FCoE by 1.79/1.67X, 3.84/1.63X and 3.66/1.40X on
512 B, 4 and 8 KB read/write requests, respectively. For
512 B read requests, FastFCoE achieves almost the highest
throughput of a single CNA, 616,221 IOPS (300.89 MB/s),
whereas the Open-FCoE is 215,117 (105.04 MB/s). This
shows that Open-FCoE has a limited throughput (IOPS), no
more than 22 K. The non-virtualized system has a better
throughput than the virtualized system. For 4 and 8 KB
requests, the non-virtualized system can achieve near maxi-
mum throughput in 10 Gbps link with 2 or 3 cores. For the
virtualized system, when using one core, FastFCoE gets
higher throughput than Open-FCoE by 1.63/1.58X, 1.76/
1.55X and 1.74/1.45X on 512 B, 4 KB, 8 KB read/write
requests, respectively. For 512 B read/write requests, FastF-
CoE achieves 617,724/540,900 IOPS (301.62/264.11 MB/s) at
most, whereas the Open-FCoE is 189,444/145,331 IOPS
(93.08/70.96 MB/s). Our FastFCoE uses the private per-CPU
structures & disabling kernel preemption to avoid synchro-
nization overhead. This approach significantly improves the
I/O scalabilitywith the increasing number of cores.

To further study the I/O scalability of FastFCoE, while
avoiding the influence from limited capacity of adapter
(CNA), we bonded four Intel X520 10 Gbps CNAs for both the
Initiator (non-virtualized server) and Target, running as a sin-
gle 40 Gbps ethernet CNA for the upper layers. The through-
put results show that FastFCoE has quite good I/O scalability
capacity, as shown in Fig. 16. For 4 KB read requests, the IOPS
of FastFCoE can improve with the increasing number of cores
to submit requests until around 1.1221M IOPS (4,383.3MB/s).
Although the write operation has higher complexity in FCP
protocol [18] than read operation, for 4 KB random write,
FastFCoE still achieves up to 830,210 IOPS (3,243MB/s).

Since I/O stack usually exhibits higher throughput with
larger request size [14], for larger size requests, FastFCoE
can achieve the higher throughput with less number of

Fig. 13. I/O scalability evaluation with orion (50 percent write). The fig-
ures show the average throughput and latency obtained by FastFCoE
and Open-FCoE in different numbers of outstanding IOs for OLTP test,
with the non-virtualized and virtualized systems, respectively.

Fig. 14. I/O scalability evaluation with orion (50 percent write). The fig-
ures show the average throughput obtained by FastFCoE and Open-
FCoE in different numbers of outstanding IOs for DSS test, with the non-
virtualized and virtualized systems, respectively.

Fig. 15. Scalability evaluation with FIO (random workload). The figures
show the total throughput of FastFCoE and Open-FCoE when changing
the number of cores submitting 64 outstanding 512 B, 4 KB and 8 KB I/O
requests in the non-virtualized and virtualized systems with 10 Gbps
CNA.

WU ETAL.: I/O STACKOPTIMIZATION FOR EFFICIENTAND SCALABLE ACCESS IN FCOE-BASED SAN STORAGE 2523

cores. With FIO using one thread, FastFCoE obtains 4,454.9
MB/s for 64 KB random read requests. FastFCoE hence has
sufficient capacity to fit with 40 Gbps link in the FCoE-based
SAN storage.

4.2.3 TPC-C and TPC-E Tests Using OLTP

Disk Traces

Many applications consume a large amount of CPU
resource and affect I/O subsystem. To show the throughput
of FastFCoE over Open-FCoE under different degrees of
CPU loads, we analyzed the throughput in both non-vir-
tualized and virtualized systems with a 10 Gbps CNA by
using OLTP benchmark traces: TPC-C [30] and TPC-E [31].
These traces are obtained from test using HammerDB [32]
with Mysql Database and collected at Microsoftware [31].
TPC-E is more read intensive with a 9.7 : 1 read-to-write
ratio I/O, while TPC-C shows a 1.9 : 1 read-to-write ratio;
and the I/O access pattern of TPC-E is random like TPC-C.

The specified loads are generated by FIO [27]. We per-
form 5, 50 and 90 percent CPU loads, respectively, to repre-
sent the three degrees of CPU loads. To compare the
throughput under the same environment, we replay these
workloads with the same time stamps within the trace logs.
Fig. 17 shows the superiority of FastFCoE over Open-FCoE
in both non-virtualized and virtualized systems. The aver-
age throughput degrades with the increasing CPU loads for
both the TPC-C and TPC-E benchmarks. For the TPC-C
benchmark, FastFCoE outperforms Open-FCoE by 1.47X,
1.41X, 1.68X and 1.55X, 1.56X, 1.13X in the non-virtualized
and virtualized systems with 5, 50 and 90 percent CPU
loads, respectively. For TPC-E benchmark, FastFCoE out-
performs Open-FCoE by 1.19X, 1.30X, 1.48X and 1.42X,
1.46X, 1.43X in the non-virtualized and virtualized systems
with 5, 50 and 90 percent CPU loads, respectively.

5 RELATED WORK

This work touches on the software and hardware interfaces
of network and storage on multi-core systems. Below we
describe the related work.

OS Bypass Scheme. To optimize the I/O performance,
much work removes the I/O bottlenecks by replacing multi-
ple layers with one flat or a pass-through layer in certain
cases. Le, Duy and Huang, Hai et al. [33] have shown that
the choice of the nested file systems on both hypervisor and
guest levels has the significant performance impact on I/O
performance in the virtualized environments. Caulfield
et al. [6] propose to bypass the block layer and implement
their own driver and single queue mechanism to improve
I/O performance.

Our optimization scheme is under the block layer and calls
the standard network interfaces to transmit/receive network
packets. Therefore, it can support all upper software compo-
nents (such as existing file systems and applications) and be
deployed with existing infrastructures (adaptors, switches
and storage devices), without the costs of extra hardware.

Scalability on Multi-core Systems. Over the last few years, a
number of studies have attempted to improve the scalability
of operating systems in the current multi-core systems. The
lock contention is regarded as one of primary reasons for
poor scalability [9], [10], [11], [12]. HaLock [10] is a hard-
ware assisted lock profiling mechanism which leverages a
specific hardware memory tracing tool to record the large
amount of profiling data with negligible overhead and
impact on even large-scale multithreaded programs.
RCL [12] is a lock algorithm that aims to improve the perfor-
mance of critical sections in legacy applications on multi-
core architectures. MultiLanes [13] builds an isolated I/O
stack on top of virtualized storage devices for each VE to
eliminate contention on kernel data structures and locks
between them, thus scaling them to many cores. Gonzlez-
Frez et al. [14] present Tyche, a network storage protocol
directly on top of Ethernet. It minimizes the synchronization
overheads by reducing the number of spin-locks to provide
scaling with the number of NICs and cores.

In this paper, to provide a scalable I/O stack, we use the
private per-CPU structures and disable kernel preemption
to process I/Os. This method avoids lock contention for
synchronization, which significantly decreases the I/O scal-
ability in multi-core servers.

High Speed I/O Software. Software overhead from high-
speed I/O, such as network adaptor and Non-Volatile
Memory storage device, obtains a lot of attentions, which
consumes substantial system resources and influences on
the system performance [26].

Rizzo and Luigi [34], [35] propose netmap, a framework
that shows user-pace applications to exchange raw packets

Fig. 16. Scalability evaluation with FIO in 40 Gbps link. IOPS obtained by
FastFCoE depends on the number of cores with 4 and 64 KB random
read/write requests when bonding four 10 Gbps CNAs as one 40 Gbps
CNA in the non-virtualization system.

Fig. 17. Throughput evaluation with TPC-C and TPC-E. The figures
show the throughputs achieved by FastFCoE and Open-FCoE, with 5,
50 and 90 percent CPU loads, in the non-virtualized and virtualized sys-
tems, respectively.

2524 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017

with the network adapter (maps packet buffers into the pro-
cess memory space), thus making a single core running at
900 MHz to send or receive 14.88 Mpps (the peak packet
rate on in 10 Gbps links). The Intel Data Plane Development
Kit [36] (DPDK) is an open source, optimized software
library for Linux User Space applications. Due to lots of
optimization strategies (such as using a polled-mode drive
to avoid the high overhead from interrupt-driven driver,
processing a bunch of packets to amortize the access cost
over multiple packets, and using Huge Pages to make best
use of limited number of TLB resources), this library can
improve packet processing performance by up to ten times
and achieve over 80 Mpps throughput on a single Intel
Xeon processor (double that with a dual-processor configu-
ration). Both netmap and intel DPDK are used by user-space
applications for fast processing of raw packets (ethernet
frames), whereas our optimization strategies within FastF-
CoE use the standard network interface in kernel to do the
FCoE protocol packets processing.

Jisoo Yang et al. [7] show that when using NVM device
polling for the I/O completion delivers higher performance
than traditional interrupt-driven I/O. Woong Shin et al. [8]
present a low latency I/O completion scheme for fast stor-
age to support current flash SSDs. Our optimization strate-
gies focuses on the issues at the software interface between
the host and the CNA, which emerges as a bottleneck in
high-performance FCoE based SAN storage.

Bjørling and Jens Axboe et al. [11] demonstrate that in
multi-core systems the single-queue block layer becomes the
bottleneck and design the next-generationmulti-queue block
layer. This multi-queue block layer leverages the perfor-
mance offered by SSDs and NVM Express, by allowing
much higher I/O submission rates. In this paper, we introdu-
ces themulti-queue block layer to FCoE protocol process and
decrease the I/O path by (1) directly mapping the requests
from the block-layer to the FCoE frames and (2) a new I/O
completion scheme, which eliminates the number of contexts
and the total execution time in the completion side.

6 CONCLUSION

In the context of high-speed network and fast storage tech-
nologies, there is a need for a high-performance storage
stack. In this paper, we expose the inefficiencies of the cur-
rent Open-FCoE stack from three factors (synchronization
overhead, processing overhead on the I/O-issuing side and
I/O completion side), which lead to a high I/O overhead
and limited I/O scalability in FCoE-based SAN storage. We
propose a synergetic and efficient solution for accessing the
FCoE based SAN storage on multi-core servers. Compared
with the current Open-FCoE stack, our solution has follow-
ing advantages : (1) better performance of parallel I/O in
multi-core servers; (2) lower I/O processing overhead both
on the I/O-issuing side and I/O completion side. Experi-
mental results demonstrate that our solution achieves an
efficient and scalable I/O throughput on multi-core servers.

ACKNOWLEDGMENTS

This work was supported by the 863 Project No.
2015AA015301; the National Key Research and Develop-
ment Program of China under Grant 2016YFB1000202; the

863 Project No.2015AA016701; NSFC No.61502191,
No.61502190, No.61472153, No.61402189; State Key Labora-
tory of Computer Architecture, No.CARCH201505; Wuhan
Applied Basic Research Project No.2015010101010004; and
Hubei Provincial NSFC No.2016CFB226. This is an extended
version of our manuscript published in the Proceedings of
the 44th International Conference on Parallel Processing
(ICPP), 2015. Fang Wang is the corresponding author. The
preliminary version appears in the Proceedings of the 44th
International Conference on Parallel Processing (ICPP),
2015, pages 330–339.

REFERENCES

[1] J. Jiang and C. DeSanti , “The role of FCoE in I/O consolidation,”
in Proc. Int. Conf. Adv. Infocomm Technol., 2008, Art. no. 87.

[2] C. DeSanti and J. Jiang, “FCoE in perspective,” in Proc. Int. Conf.
Adv. Infocomm Technol., 2008, Art. no. 138.

[3] S. Wilson, “Fibre Channel-Backbone-6 (FC-BB-6),” pp. 83–142,
2012.

[4] TechNavio, “Global fiber channel over ethernet market 2014–2018,”
2014.

[5] M. Ferdman, et al., “Clearing the clouds: A study of emerging
scale-out workloads on modern hardware,” ACM SIGARCH Com-
put. Archit. News, vol. 40, no. 1, pp. 37–48, 2012.

[6] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn, and
S. Swanson, “Providing safe, user space access to fast, solid state
disks,” ACM SIGPLAN Notices, vol. 47, no. 4, pp. 387–400, 2012.

[7] J. Yang, D. B. Minturn, and F. Hady, “When poll is better
than interrupt,” in Proc. USENIX Conf. File Storage Technol., 2012,
pp. 25–31.

[8] W. Shin, Q. Chen, M. Oh, H. Eom, and H. Y. Yeom, “OS I/O path
optimizations for flash solid-state drives,” in Proc. USENIX Conf.
USENIX Annu. Tech. Conf., 2014, pp. 483–488.

[9] S. Boyd-Wickizer, et al., “An analysis of Linux scalability to many
cores,” in Proc. 9th USENIX Conf. Operating Syst. Des. Implementa-
tion, 2010, vol. 10, no. 13, pp. 86–93.

[10] Y. Huang, Z. Cui, L. Chen, W. Zhang, Y. Bao, and M. Chen,
“HaLock: Hardware-assisted lock contention detection in multi-
threaded applications,” in Proc. 21st Int. Conf. Parallel Archit. Com-
pilation Tech., 2012, pp. 253–262.

[11] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet, “Linux block IO:
Introducing multi-queue SSD access on multi-core systems,” in
Proc. 6th Int. Syst. Storage Conf., 2013, Art. no. 22.

[12] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller, “Remote
core locking: Migrating critical-section execution to improve the
performance of multithreaded applications,” in Proc. USENIX
Annu. Tech. Conf., 2012, pp. 65–76.

[13] J. Kang, B. Zhang, T. Wo, C. Hu, and J. Huai, “Multilanes: Provid-
ing virtualized storage for OS-level virtualization on many cores,”
in Proc. 12th USENIX Conf. File Storage Technol., 2014, pp. 317–329.

[14] P. Gonz�alez-F�erez and A. Bilas, “Tyche: An efficient ethernet-
based protocol for converged networked storage,” in Proc. IEEE
Conf. Mass Storage Syst. Technol., 2014, pp. 1–11.

[15] R. Love, Linux Kernel Development. Upper Saddle River, NJ, USA:
Pearson Education, 2010.

[16] Networking Division, “Intel 82599 10 gigabit ethernet controller
datasheet revision 3.2,” 2015.

[17] Open-FCoE. [Online]. Available: http://www.open-fcoe.org
[18] R. Snively, “Fibre channel protocol for SCSI (FCP),” 2002.
[19] M. M. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip

cache coherence is here to stay,” Commun. ACM, vol. 55, no. 7,
pp. 78–89, 2012.

[20] M. Lis, K. S. Shim,M.H.Cho, and S.Devadas, “Memory coherence in
the age ofmulticores,” in Proc. Int. Conf. Comput. Des., 2011, pp. 1–8.

[21] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory
consistency and cache coherence,” Synthesis Lectures Comput.
Archit., vol. 6, no. 3, pp. 1–212, 2011.

[22] D. Zhan, H. Jiang, and S. Seth, “CLU: Co-optimizing locality and
utility in thread-aware capacity management for shared last level
caches,” IEEETrans. Comput., vol. 63, no. 7, pp. 1656–1667, Jul. 2014.

[23] D. Zhan, H. Jiang, and S. C. Seth, “Locality & utility co-optimiza-
tion for practical capacity management of shared last level
caches,” in Proc. 26th ACM Int. Conf. Supercomputing, 2012,
pp. 279–290.

WU ETAL.: I/O STACKOPTIMIZATION FOR EFFICIENTAND SCALABLE ACCESS IN FCOE-BASED SAN STORAGE 2525

[24] Y. Hua, X. Liu, and D. Feng, “Mercury: A scalable and similarity-
aware scheme in multi-level cache hierarchy,” in Proc. Int. Symp.
Model. Anal. Simul. Comput. Telecommun. Syst., 2012, pp. 371–378.

[25] Intel guide for developing multithreaded applications. [Online].
Available: https://software.intel.com/en-us/articles/intel-guide-
for-developing-multithreaded-applications

[26] B. H. Leitao, “Tuning 10Gb network cards on Linux,” in Proc.
Linux Symp., 2009, pp. 169–184.

[27] Flexible IO generator. [Online]. Available: http://freecode.com/
projects/fio.

[28] Oracle, “ORION: Oracle I/O numbers calibration tool.”
[29] TPC-C specification. [Online]. Available: http://www.tpc.org/

tpcc/default.asp
[30] TPC-E specification. [Online]. Available: http://www.tpc.org/

tpce/default.asp
[31] Microsoft enterprise traces. [Online]. Available: http://iotta.snia.

org
[32] HammerDB. [Online]. Available: http://www.hammerdb.com/

index.html
[33] D. Le, H. Huang, and H. Wang, “Understanding performance

implications of nested file systems in a virtualized environment,”
in Proc. USENIX Conf. File Storage Technol., 2012, Art. no. 8.

[34] L. Rizzo, “Netmap: A novel framework for fast packet I/O,” in
Proc. USENIX Annu. Tech. Conf., 2012, pp. 101–112.

[35] L. Rizzo and M. Landi, “Netmap: Memory mapped access to net-
work devices,” ACM SIGCOMM Comput. Commun. Rev., vol. 41,
no. 4, pp. 422–423, 2011.

[36] Data plane development kit. [Online]. Available: http://www.
dpdk.org/

Yunxiang Wu received the BE degree in com-
puter science and technology from Wuhan Uni-
versity of Science and Technology (WUST),
China, in 2009. He is currently working toward
the PhD degree majoring in computer architec-
ture at Huazhong University of Science and Tech-
nology, Wuhan, China. His current research
interests include computer architecture and stor-
age systems.

Fang Wang received the BE and master’s
degrees in computer science, in 1994, 1997, and
the PhD degree in computer architecture from
Huazhong University of Science and Technology
(HUST), China, in 2001. She is a professor of
computer science and engineering with HUST.
Her interests include distribute file systems, par-
allel I/O storage systems, and graph processing
systems. She has more than 50 publications in
major journals and international conferences,
including the Future Generation Computer Sys-

tems, the ACM Transactions on Architecture and Code Optimization,
the Science China Information Sciences, the Chinese Journal of Com-
puters, and HiPC, ICDCS, HPDC, ICPP.

Yu Hua received the BE and PhD degrees in
computer science from Wuhan University, China,
in 2001 and 2005, respectively. He is a full profes-
sor with Huazhong University of Science and
Technology, China. His research interests include
computer architecture, cloud computing, and net-
work storage. He has more than 100 papers to
his credit in major journals and international con-
ferences including the IEEE Transactions on
Computers, the IEEE Transactions on Parallel
and Distributed Systems, USENIX ATC, USENIX

FAST, INFOCOM, SC, and ICDCS. He has been on the program commit-
tees of multiple international conferences, including USENIX ATC,
RTSS, INFOCOM, ICDCS, MSST, ICNP, and IPDPS. He is a senior
member of the IEEE, the ACM, and the CCF, and a member of the
USENIX.

Dan Feng received the BE, ME, and PhD
degrees in computer science and technology
from Huazhong University of Science and Tech-
nology (HUST), China, in 1991, 1994, and 1997,
respectively. She is a professor and vice dean of
the School of Computer Science and Technology,
HUST. Her research interests include computer
architecture, massive storage systems, and par-
allel file systems. She has more than 100 publica-
tions in major journals and international
conferences, including the IEEE Transactions on

Computers, the IEEE Transactions on Parallel and Distributed Systems,
the ACM Transaction on Storage, the Journal of Computer Science and
Technology, FAST, USENIX ATC, ICDCS, HPDC, SC, ICS, IPDPS, and
ICPP. She serves on the program committees of multiple international
conferences, including SC 2011, 2013 and MSST 2012. She is a mem-
ber of the IEEE and a member of the ACM.

Yuchong Hu received the BEng degree in com-
puter science and technology from Special Class
for the Gifted Young (SCGY), University of Sci-
ence and Technology of China, in 2005, and the
PhD degree in computer software and theory from
the University of Science and Technology of
China, in 2010. He is an associate professor of the
School of Computer Science and Technology,
Huazhong University of Science and Technology.
His research interests include network coding/era-
sure coding, cloud computing, and network stor-

age. He has more than 20 publications in major journals and
conferences, including the IEEE Transactions on Computers, the IEEE
Transactions on Parallel and Distributed Systems, the IEEE Transactions
on Information Theory, FAST, INFOCOM,MSST, ICC, DSN, and ISIT.

Wei Tong received the BE, ME, and PhD
degrees in computer science and technology
from the Huazhong University of Science and
Technology (HUST), China, in 1999, 2002, and
2011, respectively. She is a lecturer of the School
of Computer Science and Technology, HUST. Her
research interests include computer architecture,
network storage system, and solid state storage
system. She has more than 10 publications in
journals and international conferences including
the ACM Transactions on Architecture and Code
Optimization, MSST, NAS, FGCN.

Jingning Liu received the BE degree in com-
puter science and technology from the Huazhong
University of Science and Technology (HUST),
China, in 1982. She is a professor in the HUST
and engaged in researching and teaching of com-
puter system architecture. Her research interests
include computer storage network system, high-
speed interface and channel technology, embed-
ded system.

Dan He is currently working toward the PhD
degree majoring in computer architecture at
Huazhong University of Science and Technology,
Wuhan, China. His current research interests
include solid state disks, PCM, and file system.
He publishes several papers including the Trans-
actions on Architecture and Code Optimization,
HiPC, ICA3PP, etc.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2526 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2017

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

