IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO. 1,

JANUARY 2019 15

Bandwidth and Energy Efficient Image Sharing
for Situation Awareness in Disasters

Pengfei Zuo, Student Member, IEEE, Yu Hua
Xue Liu, Member, IEEE, Jie Wu, Yuncheng Guo, Wen Xia

, Senior Member, IEEE, Yuanyuan Sun,
, Shunde Cao, and Dan Feng, Member, IEEE

Abstract—In order to save human lives and reduce injury and property loss, Situation Awareness (SA) information is essential and
important for rescue workers to perform the effective and timely disaster relief. The information is generally derived from the shared
images via widely used smartphones. However, conventional smartphone-based image sharing schemes fail to efficiently meet the
needs of SA applications due to two main reasons, i.e., real-time transmission requirement and application-level image redundancy,
which is exacerbated by limited bandwidth and energy availability. In order to provide efficientimage sharing in disasters, we propose a
bandwidth- and energy- efficient image sharing system, called BEES. The salient feature behind BEES is to propose the concept of
Approximate Image Sharing (AIS), which explores and exploits approximate feature extraction, redundancy detection, and image
uploading to trade the slightly low quality of computation results in content-based redundancy elimination for higher bandwidth and
energy efficiency. Nevertheless, the boundaries of the tradeoffs between the quality of computation results and efficiency are generally
subjective and qualitative. We hence propose the energy-aware adaptive schemes in AlS to leverage the physical energy availability to
objectively and quantitatively determine the tradeoffs between the quality of computation results and efficiency. Moreover, unlike
existing work only for cross-batch similar images, BEES further eliminates in-batch ones via a similarity-aware submodular
maximization model. The response time of querying similar images is reduced via leveraging a geographic coordinate based index
partitioning scheme. We have implemented the BEES prototype which is evaluated via three real-world image datasets. Extensive
experimental results demonstrate the efficacy and efficiency of BEES. We have released the source codes of BEES at GitHub.

Index Terms—Image sharing system, content-based redundancy elimination, situation awareness, disaster environments

1 INTRODUCTION

URING disaster events, Situation Awareness (SA) infor-

mation, such as the surroundings and individuals,
road conditions, resource information, etc., is essential and
important, since the real-time responders and rescue work-
ers rely on the SA information to perform the effective and
timely disaster relief to save human lives and reduce injury
and property loss [1], [2], [3].

Images are full of rich information (e.g., people, loca-
tions, and events) to present the real situations and provide
vivid description of in-situ objects, which play an important
role in the disaster relief [1], [2], [3], [4]. The images taken
by smartphones usually include the current geographic
coordinates that are recorded in the EXIF headers of gener-
ated JPEG photographs [5]. Due to the extensive use and
easy access to Internet of smartphones, smartphones based
crowdsourcing for sharing image-based information is

o P.Zuo,Y.Hua, Y. Sun,]. Wu, Y. Guo, W. Xia, S. Cao, and D. Feng are
with the Wuhan National Laboratory for Optoelectronics, School of
Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan, Hubei 430074, China. E-mail: {pfzuo, csyhua,
sunyuanyuan, wujie, ycguo, xia, csd, dfeng}@hust.edu.cn.

e X. Liu is with the School of Computer Science, McGill University,
Montreal, Quebec H3A 0G4, Canada. E-mail: xueliu@cs.mcgill.ca.

Manuscript received 25 Feb. 2018; revised 26 [June 2018; accepted 22 July
2018. Date of publication 25 July 2018; date of current version 12 Dec. 2018.
(Corresponding author: Yu Hua.)

Recommended for acceptance by Z. Chen.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2018.2859930

important and helpful to support SA. For example, crowd-
sourcing has been applied in the Nepal earthquake to collect
the latest information from earthquake-affected areas and
create a dynamic map that shows the locations in which aid
and relief are needed [6]. In the Typhoon Haiyan (2013), as
part of the relief efforts, social medias using the shared
images have been exploited and explored by volunteers to
show where the most help is needed [7].

Although the image-based information is beneficial for
SA, the image sharing via smartphones based crowdsourc-
ing fails to efficiently support the SA in the disaster relief
due to three main limitations. 1) Bandwidth Bottleneck. Due
to the potential damages on communication infrastructure
in disasters, network bandwidth possibly becomes very lim-
ited in capacity. Even though some schemes are utilized to
remedy the network communication, such as, delay tolerant
networks [8], [9] and mobile ad hoc networks [10], [11], the
strict bandwidth constraint remains [12]. 2) Energy Con-
straint. The smartphones are used to take and upload mas-
sive images. It is well-known that smartphones have a low
battery lifetime that is the main concern for users. For exam-
ple, ChangeWave conducted a market study for smart-
phone dislikes, which shows 38 percent of the respondents
listed battery lifetime as their biggest complaint [13]. More
importantly, it is difficult for limited-energy smartphones to
be re-charged in the context of disasters due to the infrastruc-
ture destruction [4]. 3) Real-time Transmission Inefficiency.
Real-time data analytics are important for time-sensitive
decision making in disaster relief [1], such as, the prediction

1045-9219 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
https://orcid.org/0000-0003-4093-6391
mailto:
mailto:
mailto:

16 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO. 1,

about the impact of the disasters and the selection of the suit-
able responses to the disasters. To support real-time data
analytics, we need to timely deliver the images with SA
information taken by smartphones to the servers.

A large number of images that users upload during the
disaster events contain significant redundancies. For exam-
ple, 53 and 22 percent similar images exist respectively in
the San Diego fire (2007) and the Haiti earthquake (2010)
imagesets [3]. Specifically, according to the observations of
Facebook [14], users prefer to upload a batch of images
(e.g., an album) instead of a single image. Thus the batch
upload produces the cross-batch and in-batch similar
images. In general, cross-batch similar images are the images
that are similar to the images in the servers uploaded by
other batches, which are produced by the cases that multi-
ple users take pictures for the same objects or situations. In-
batch similar images are the similar images among the images
belonging to the same batch, which is also a common situa-
tion, such as, burst shooting and taking multiple pictures
for identical objects. Image sharing in disasters mainly aims
to provide the SA information and clues for disaster relief.
Sharing redundant images consumes the limited resources
but provides repetitive information [3], [4], [15], [16]. Hence,
it is important to eliminate the transmission of redundant/
similar images to obtain bandwidth and energy savings.
However, to achieve the goals of the bandwidth and energy
efficiency when eliminating the similar images, there are
several challenges to address.

1) Efficiently identify in-batch similar images. Existing
schemes [3], [4], [16] only eliminate the cross-batch
similar images while overlooking in-batch similar
images. The former is easy to be identified by query-
ing the server index. For a queried image, if there
exist similar images in the servers, the image does
not need to be uploaded. Otherwise, it will be
uploaded. However, identifying the latter is nontriv-
ial. Only querying the server index cannot identify
in-batch similar images since these images are not
uploaded and hence their image features do not exist
in the index. The key problem to identify in-batch
similar images is how to select the retained unique
images in a batch.

2) Deal with the inefficiency of simply eliminating similar
images. The second challenge is that simply eliminat-
ing redundant images becomes inefficient to low
redundancy. Existing schemes [2], [3], [4], [16] only
aim to eliminate the image redundancy to improve
the efficiency of image sharing, whose performance
heavily relies on the percentage of redundant images
to be uploaded. In the worst case, although not
impossible, few redundant images exist in the
uploaded images. These schemes become ineffective,
and even consume more energy than directly
uploading images due to requiring to extract image
features for similarity detection.

3) Obtain suitable tradeoffs in similar images elimination.
There exist a series of approximate computing pro-
cesses during eliminating redundant images, such as
image feature extraction and similar image detec-
tion. However, the boundaries of the tradeoffs

JANUARY 2019

between the quality of computation results and
energy and bandwidth efficiency in these approxi-
mate computing processes are usually subjective
and qualitative. For example, extracting high-quality
image features results in high detection precision
while consuming high energy. It is difficult to deal
with the tradeoff between detection precision and
energy efficiency for feature extraction.

To address these challenges, we propose a Bandwidth-
and Energy-Efficient image Sharing system [17], called
BEES,! to offer real-time SA in the disaster environments.
BEES aims to substantially reduce the consumption of band-
width and energy during image sharing, and maintain the
high efficiency even in the worst case where few redundant
images exist. Moreover, by monitoring the energy availabil-
ity, BEES adaptively adjusts its behaviors and carefully
handles the tradeoffs between the quality of computation
results and energy consumption to obtain energy savings
and extend the battery life. To achieve these design goals,
we have the following contributions.

1) To identify and eliminate in-batch similar images,
we propose a similarity-aware submodular [18] max-
imization model (SSMM) in BEES to compute the
unique image subset for each uploaded image batch.

2) To deal with the inefficiency of simply eliminating
similar images, we propose the concept of Approxi-
mate Image Sharing (AIS), which leverages approxi-
mate feature extraction, approximate redundancy
detection, and approximate image uploading to
trade the slightly low quality of computation results
in content-based redundancy elimination for higher
bandwidth and energy efficiency.

3) To obtain suitable tradeoffs in approximate computing
processes of AIS, we propose the energy-aware adap-
tive schemes to leverage the physical energy availabil-
ity to determine the tradeoffs between the quality of
computation results and efficiency, which provides an
objective and quantitative tradeoff boundary.

4) To reduce the response time of querying similar
images, we propose a geographic coordinate based
index partitioning (GIP) scheme, which exploits the
geographic coordinate properties of images. The pro-
posed GIP partitions the entire feature index into
grids based on the longitudes and latitudes of
images. Thus to search the similar images of a given
image, we only need to query limited grids that are
covered by a small range of which center is the geo-
graphic coordinate of the queried image. Thus the
response time of querying similar images is reduced
via efficiently reducing the search range.

5) Wehave implemented the BEES prototype and evalu-
ated its performance by using three real-world image
datasets. Compared with the state-of-the-art schemes,
including SmartEye [4] and MRC [16], experimental
results demonstrate that BEES reduces more than
67.3 percent energy overhead, 77.4 percent band-
width overhead, 70.4 percent average image

1. BEES collecting images in disaster areas via crowdsourcing looks
like a number of bees gathering pollen in a flower field.

ZUO ET AL.: BANDWIDTH AND ENERGY EFFICIENT IMAGE SHARING FOR SITUATION AWARENESS IN DISASTERS 17

uploading delay, and extends the battery lifetime by
84.3 percent. Moreover, the energy-aware adaptive
schemes in BEES further extend the battery lifetime
by about 20 percent, compared with BEES without
energy-aware adaptive schemes. The source codes of
BEES have been released at GitHub.?

The rest of this paper is organized as follows. Section 2
presents the background of image features. Section 3
presents the system architecture of BEES. The design details
of BEES are described in Section 4. We evaluate the perfor-
mance in Section 5 and discuss several issues about the
design of BEES. Section 6 presents the related work. We con-
clude this paper in Section 7.

2 BACKGROUND AND MOTIVATION

In this section, we aim to explore which kind of image fea-
ture is suitable in the resource-constrained environments.
We first present several state-of-the-art feature extraction
algorithms. We then explore the performance characteristics
of these feature extraction algorithms in smartphones.

2.1 Image Features

Both global features [19] and local features [20] of images
can be used to detect similar images. Global features gener-
alize the entire content of an image with a single feature vec-
tor, which can be computed by color histogram, texture
values, shape parameters of images, etc. Local features are
computed at multiple points in the images. Since local fea-
tures have more robust and higher accuracy than global fea-
tures for similarity detection [3], [16], [21], we focus on the
local features of images in BEES.

We first present existing local feature extraction algori-
thms. Local feature extraction consists of two steps, i.e., fea-
ture point detection and feature descriptor. SIFT [20] is a
widely used algorithm to detect and describe local features in
images. Each feature in SIFT is a 128-dimension vector. SIFT
has high accuracy, but causes high computation complexity.
PCA-SIFT [22] improves the feature descriptor method of
SIFT and reduces the dimensions of features from 128 to 36.
SURF [23] aims to speed up the feature extraction by develop-
ing a scale- and rotation-invariant feature point detector and
descriptor. The dimension of the SURF feature is configura-
ble, i.e., 128 or 64 dimensions. ORB [24] uses FAST feature
detector [25] and BRIEF descriptor [26]. The ORB feature is
binary rather than vector-based computed by the above sev-
eral algorithms, and described by 256 binary digits.

An image I; can be represented as a set of local features
S;. The similarity of two images I; and > can be computed
as the Jaccard similarity of sets S; and Ss:

SN S
szm([l,lg) :”‘35761522” (]-)

2.2 Energy and Bandwidth-Constrained Feature
Extraction in Smartphones

Previous schemes [24], [27], [28] mainly evaluate and com-

pare feature extraction algorithms in terms of the precision

of similarity detection, the time of feature extraction or the

2. https://github.com/Pfzuo/BEES

ESIFT ®PCA-SIFT ©OSURF ®ORB
12 105 L ppa

IZSSIFT EPCA-SIFT OSURF mORB BImage

Energy Efficiency
Bandwidth Efficiency
=3 3 - N

Group 1 Group 2 Group 3

Kentucky Paris

(b) Bandwidth efficiency

(a) Energy efficiency

Fig. 1. The normalized energy and bandwidth efficiency.

speed of similarity detection, failing to exploring the effi-
ciency of their bandwidth and energy efficiency in smart-
phones. The efficiency is important in resource-constraint
disaster environments. Hence, we study bandwidth and
energy characteristics of image feature extraction algorithms
via extensive smartphone-based experiments. The experi-
mental setup is described in Section 5.1.

o Energy efficiency: i.e., the enerqy overhead of extracting
image features in smartphones. We select three-group images
from the disaster imageset described in Section 5.1. Each
group contains 100 images. We respectively extract their
SIFT, PCA-SIFT, SURF and ORB features in smartphones,
and capture the energy overheads. Their energy overheads
are normalized to that of SIFT as shown in Fig. 1a.

o Bandwidth efficiency: i.e., the bandwidth overhead of upload-
ing image features, which is equal to the size of image features.
We respectively extract SIFT, PCA-SIFT, SURF and ORB fea-
tures of all images in the Kentucky and disaster imagesets
described in Section 5.1. Note that the numbers of SIFT,
PCA-SIFT and SUREF features for each image are related to
image contents. 500 ORB features are extracted for each
image as suggested by Rublee et al. [24]. Thus the size of
ORB features for each image is only 16KB (325 * 500). The
sizes of four kinds of features and the total size of images
are normalized to the size of SIFT as shown in Fig. 1b.

As shown in Fig. 1, SIFT and PCA-SIFT consume huge
energy to extract features with low energy efficiency. The
SIFT and SURF are large-sized and even larger than the sizes
of images themselves, with low bandwidth efficiency. The
energy and bandwidth efficiencies of ORB are about two
orders of magnitude better than that of other algorithms, due
to lightweight computation and small-size binary features.
The size of ORB features is much smaller than the image size.

In summary, ORB is more energy- and bandwidth-
efficient than other feature extraction algorithms, and its
produced image features have much smaller size than
images. This observation motivates us to eliminate similar
images in the source via uploading ORB features in advance
for detecting similar images, which would significantly
reduce the energy and bandwidth overheads of uploading
images in real-time disaster SA.

3 THE SYSTEM ARCHITECTURE OF BEES

In this section, we first describe the traditional system
architecture for smartphone-based image sharing and the
system architecture of BEES. We then present the work-
flow of BEES system.

3.1 The System Framework

In the traditional system architecture [4], [16], as shown in
Fig. 2, there are three key components, i.e., Image Feature

18 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO. 1,

‘ Image Feature Index in the ‘
Servers

Image Feature Exaction (IFE)

Image Redundancy Detection (IRD)
‘ Cross-batch Redundancy

|

|

|

|

Features |
> |

|

Detection :
|

|

|

|

|

|

A

‘ Image Feature Exaction

Unique Image Uploading (UIU)

‘ Unique Image Uploading ‘

Unique Images |

i
Image Storage :
|
I

| Cloud Storage Servers

Fig. 2. The traditional system architecture.

Extraction (IFE), Image Redundancy Detection (IRD) and
Unique Image Uploading (UIU). IFE extracts the features
(e.g., PCA-SIFT [22] and ORB [24]) of a batch of images in
smartphones, and sends the image features to cloud servers.
IRD queries the image features in the server index to deter-
mine whether there exist similar images in the cloud servers,
and responds the query results to the smartphones. UIU only
uploads the unique images in the image batch to the servers.
The traditional framework is inefficient in terms of bandwidth
and energy due to overlooking the several problems, i.e., fail-
ing to eliminate in-batch similar images and becoming ineffi-
cient when few similar images exist, as described in Section 1.
Therefore, we propose a new system architecture, i.e.,
BEES, for bandwidth- and energy-efficient image sharing,
as shown in Fig. 3. BEES introduces three new key techni-
ques. First, BEES proposes SSMM to detect in-batch similar
images. Second, BEES proposes the concept of Approximate
Image Sharing (AIS) to obtain bandwidth and energy sav-
ings via trading the quality of computation results. Specifi-
cally, in AFE, since extracting features consumes substantial
energy, BEES explores and exploits bitmap compression to
trade the feature computation quality for higher energy
efficiency. In ARD, BEES adjusts the similarity detection
threshold to select the images with the lower redundancy
for saving bandwidth and energy. In AIU, BEES leverages
image quality and resolution compression to trade image
quality for higher bandwidth and energy efficiency. Third,
it is a challenge to objectively and quantitatively handle the
tradeoffs between the quality of computation results and
efficiency. To address the challenge, three energy-aware
adaptive schemes (EAAS) are respectively proposed in the
three components (i.e., AFE, ARD and AIU) to objectively
and quantitatively adjust the tradeoffs between the quality
of computation results and efficiency by using the remain-
ing energy of smartphones (Ej,;). When the Ey,, is sufficient,
EAAS provides high-quality computation results; when the
Eyq is insufficient, EAAS aims to save energy by slightly
reducing the quality of computation results. Fourth, to
reduce the response time of querying the server index, we
propose a geographic coordinate based index partitioning
(GIP) scheme to partition the entire feature index into grids.
Thus a query request only needs to query the corresponding
several grids, significantly reducing the search range.

JANUARY 2019

‘ Image Feature Index in the Servers

Approximate Feature Exaction (AFE)

Energy-aware Bitmap
Compression

|Approximate Redundancy Detection (ARD)
Cross-batch Redundancy
Detection (CBRD)

Features

‘ Image Feature Exaction ‘

|
|
|
|
|
|
|
|
|
:
| Detection (IBRD) via SSMM
|
|
|
|
|
|
|
|
|
|
|

Energy
In-batch Redundancy
Approxi Image Uploading (AIU)
Energy-aware Image
Compression Query Results
2
‘ Unique Image Uploading ‘

e

i
Image Storage |
i
I

| Cloud Storage Servers

Fig. 3. The system architecture of BEES.

3.2 The Workflow in BEES

The workflow in BEES consists of the procedures in both
smartphone clients and the servers as shown in Fig. 3.
Before uploading a batch of images, a client first obtains the
remaining energy of smartphone battery (Ej,) and then
compresses the resolution of images based on L, ie.,
energy-aware adaptive image compression, as described in
Section 4.1. The client further extracts the ORB features of
the compressed images, and the geographic coordinate
information. The image features, the parameter of £y, and
geographic coordinates are uploaded to the servers.

When receiving the data, the server queries the features
of each image in the server index to obtain the maximum sim-
ilarity of each queried image with the images in the server.
The server then determines the similarity threshold 7" based
on the parameter Ej,;. The images, whose maximum similari-
ties are larger than the threshold 7', are considered as the
redundant images and will not be uploaded according to the
principle of Energy Defined Redundancy (EDR) described in
Section 4.2.1. The remaining image batch, in which the maxi-
mum similarities of all images are smaller than 7', are per-
formed with submodular optimization and the greedy
algorithm to eliminate the in-batch similar images, which is
In-batch Redundancy Detection (IBRD) described in Section
4.2.2. The selected subset of images by IBRD is the images
which will be finally uploaded. The server responds the
redundancy detection result of each image to the clients. If the
images are not redundant, the client compresses and then
uploads them, which is described in Section 4.3. Otherwise,
they will not be uploaded. After receiving the images, the
server finally decompresses and stores the images.

4 THE DESIGN DETAILS

4.1 Approximate Feature Extraction

To detect image similarity, image features are first extracted
and uploaded to the servers. Even through being more
energy-efficient than other feature extraction algorithms as
described in Section 2, ORB still incurs much energy consump-
tion [16]. It is necessary to reduce the energy overhead of fea-
ture extraction for energy-constraint smartphones. We observe

ZUO ET AL.: BANDWIDTH AND ENERGY EFFICIENT IMAGE SHARING FOR SITUATION AWARENESS IN DISASTERS 19

=)
S

©
S o S S

[SERSERSY

(SR

Normalized Energy Overhead (%)
[SSIVTI N Loh []

ol P R R ST N S ST T M S A

0 0.10203040.50.60.70809
Compression Proportion

0 0.1020.3040.50.6 070809
Compression Proportion

(a) Normalized precision (b) Normalized energy overhead

Fig. 4. The impact of bitmap compression proportion on precision and
energy overhead (We also use 400, 800 images to examine precision
and energy overhead when obtaining near-identical results).

that compressing the in-memory bitmaps of images before
extracting their features can significantly decrease the compu-
tation (energy) overhead. However, computing the features
from compressed image bitmaps also decreases the quality of
image features. The low-quality features cause the low preci-
sion of similarity detection. Therefore, we need to obtain a suit-
able tradeoff between the energy overhead and the precision of
similarity detection for image bitmap compression.

We first explore the relationships among the bitmap
compression proportion, the precision of similarity detec-
tion, and the energy overhead of extracting features, via
extensive experiments. The bitmap compression proportion
is defined as the ratio of the decrement in the length or
width of the compressed image bitmap to those of the origi-
nal bitmap. We use a well-known public imageset (Univer-
sity of Kentucky imageset [29]) which contains 10,200
images in groups of 4 images from one scene. The 4 images
in the same group are similar to each other in the imageset.
We select one image from each group and 200 images in
total as the queried images. The average number of the simi-
lar images in top-4 query results is used to measure the
query precision (defined in Equation (3)) [16], [29]. We com-
press the bitmaps of queried images with the proportions
from 0 to 0.9 with the interval of 0.05, and then extract their
ORB features for similarity detection. In the meantime, we
capture the energy overhead of extracting features.

Precision versus Compression Proportion. We normalize the
query precision of compressed image bitmaps to that of
original images as shown in Fig. 4a. With the increase of
the compression proportion, the normalized precision
decreases. We also observe that we can still ensure a high
precision when significantly compressing image bitmaps.
For example, when the compression proportion is 0.4, the
normalized precision is higher than 0.9.

Energy Owverhead versus Compression Proportion: We nor-
malize the energy overhead of compressed images to that of
original images, as shown in Fig. 4b. With the increase of the
compression proportion, the energy overhead of extracting
the ORB features from compressed image bitmaps decreases.
We observe that there is an approximate linear relationship
between the compression proportion and energy overhead.

Motivated by the observations, in order to obtain a suit-
able tradeoff between the energy overhead and detection
precision, we present an energy-aware adaptive compres-
sion (EAC) scheme to dynamically adjust the bitmap com-
pression proportion according to Ej.,;. When the energy is

sufficient, EAC provides high detection precision; when the
energy is insufficient, EAC is designed to save energy with
a slight loss in detection precision.

In general, less than 10 percent errors for approximate
computing processes are considered to be acceptable [30],
[31]. In the EAC scheme, we design the relationship
between the compression proportion (C) and the remaining
energy (Ej,) as a linear function. Specifically, in order to
ensure the compromising precision smaller than 10 percent,
we set the function as C' = 0.4 — 0.4E},; based on the statis-
tic analysis of the practical measured data. The function can
ensure a high precision while significantly saving energy in
the case of low energy. For example, when E;,; is 5 percent,
C is set to 0.38 according to the function, which can save
about 40 percent energy of extracting features while ensur-
ing higher than 90 percent precision, as shown in Fig. 4.

4.2 Approximate Redundancy Detection

For a given image batch in a smartphone, redundant image
detection in BEES includes two parts, i.e., cross-batch
redundancy detection (CBRD) and in-batch redundancy
detection (IBRD). CBRD detects the similarity between the
images in the given image batch and the images in the serv-
ers which are previously uploaded by other batches/smart-
phones. CBRD eliminates cross-batch similar images by
querying the server index. However, only querying the
index cannot eliminate in-batch similar images since these
images are not uploaded and hence their image features do
not exist in the index. Therefore, we propose IBRD to detect
the redundancy among the images in a batch.

4.2.1 Cross-Batch Redundancy Detection

In the context of this paper, a redundant image is determined
by the maximum similarity which is defined as the similarity
between the queried image and its most similar image (i.e.,
the image that has the highest similarity score) in the servers.
If the maximum similarity is more than a similarity threshold
T, the queried image is considered to be redundant and will
not be uploaded. Otherwise, the image is unique. Note that
the similarity score is defined in Euqation (1).

A reasonable similarity threshold relies on the subjective
viewpoints from users and the objective similarity scores
computed by using ORB features. In order to explore the
similarity property of similar and dissimilar image pairs,
we respectively select 5,000-pair similar and dissimilar
images from the Kentucky imageset (described in Section
5.1). In the imageset, if two images of an image pair belong
to the same group, the image pair is considered as a similar
image pair. Otherwise, it is a dissimilar image pair. We
extract the features of these images and compute their simi-
larity (defined in Equation (1)). The similarity distributions
of similar and dissimilar image pairs are shown in Fig. 5.

Fig. 5 shows the true positive rates (similar images are
accurately detected) and false positive rates (dissimilar
images are detected to be similar) for similarity detection
given a similarity threshold. For example, the similarity
of 95.4 percent similar images is larger than 0.01 and the
similarity of 26.2 percent dissimilar images is larger than
0.01. Thus, if the similarity threshold is set to 0.01, the true
positive rate is 95.4 percent and the false positive rate is
26.2 percent. We can also observe that both true and false

20 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.T1,

——Similar image pairs —-Dissimilar image pairs

100
% M
60
40
20
0

—_
(=1
(=]

[e]
(=]
T

[\
(=) (=]
f/ e L

(=N
[}
T

0.01 0.012 0.014 0.016 0.018
Similarity

~
S
T

Similarity Distribution (%)

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19
Similarity

Fig. 5. The similarity distribution.

positive rates decrease with the increase of the threshold.
Hence, a reasonable threshold is a tradeoff between the
high true positive and the low false positive rates.

In BEES, the similarity threshold 7" is not fixed. We pro-
pose the Energy Defined Redundancy (EDR) which uses the
remaining energy (Ej,) to dynamically adjust T" to deter-
mine whether an image is redundant. EDR aims to elimi-
nate the higher-similarity images when the energy is
sufficient, and eliminate more images by reducing 7" when
the energy is insufficient. Based on the experimental results
shown in Fig. 5, we argue that the similarity threshold
should be larger than 0.013, which leads to 90 percent true
positive rate and 10 percent false positive rate. In order to
ensure the false positive ratio not larger than 10 percent [30],
[31], EDR defines the relationship between the threshold T
and Ey, as T = 0.013 + k * Eyy (K = 0.006).

EDR is more important when the smartphones are in low
battery status and fail to upload all images. Smartphones
only need to upload the images which have low/no similar-
ity with the images in the servers using the limited energy,
since EDR reduces 7" in low battery status.

4.2.2 In-Batch Redundancy Detection

In a batch of images, there may exist multiple images simi-
lar to each other. The key problem is how to select the
retained unique images in the uploaded batch. A simple
solution is to enumerate all image subsets, and then sort
them based on distance-based metric and select the top one,
which unfortunately results in high computation and time
overheads. In order to address this problem, we propose a
similarity-aware submodular maximization model (SSMM).
We first formulate the problem and define an image
batch as a weighted graph G = (V,E,w). V is the set of
images. E is the set of edges that connect two images in set
V. Each edge (i, j) € F has a non-negative weight w; ; that is
scored by the similarity between images ¢ and j. Given a
batch of images V' = {vy,vs,...,v,}, we aim to find a subset
S C V, which best summarizes the batch and represents the
images using the smallest number. We leverage a scoring
function (F' : 2V — R) to quantitatively represent the quality
of a summary. The image subset can be computed:
S* € argmaxgcy F(S) st |S| <b. (2)
Given a constraint |S| < b, Equation (2) can be modeled
as the form of submodular maximization subject to knap-
sack constraints which is NP-complete [32]. Moreover, if the

JANUARY 2019

function F' is the monotone submodular function, a simple
greedy algorithm can efficiently and near-optimally address
Equation (2) with the worst-case guarantee of F(S) >
(1 —=1/e)F(Sy) ~ 0.632F(S,)), where Sy, is the optimal sub-
setand S is the subset obtained by a greedy algorithm [32], [33].

Equation (2) needs a constraint, and otherwise, it is NP-
hard. In the constraint | S| < b, |.S| is the number of images in
S and b is the budget. In the existing work [33], [34], the bud-
get is fixed and assigned by users. For example, a user wants
to select the maximum of 9 images to post on Facebook from
an image collection taken in a holiday, and thus the budget b
is 9. However, the fixed budget is inefficient in our applica-
tion situation, since the budget should be the number of non-
redundant images which is different from batch to batch.

Hence, we propose the SSMM to adaptively determine
the budget b based on the similarities among the images in
V, which aims to achieve that the higher the similarities
among the images in V' are, the lower the budget b is. In the
weighted graph G = {V,E,w}, SSMM cuts the edges of
which the weight w is smaller than a threshold 7,,. Thus the
graph G is partitioned into multiple subgraphs. There are
higher similarities among the images within the subgraph.
SSMM takes the number of the partitioned subgraphs as the
budget b. Thus the higher the similarities among the images
in V are, the smaller the number of the partitioned sub-
graphs is, which results the lower budget. Moreover, the
number of the partitioned subgraphs, i.e., the budget b, not
only depends on the similarities among the images in V' but
also the threshold 7). It is obvious that the larger the thresh-
old T, is, the more the partitioned subgraphs is, the larger
the budget b is. We also dynamically adjust the threshold 7,
based on Ej,:. Specifically, we design T}, = 0.013 + k * Ejy
(k= 0.006) referring to the parameters in EDR.

In the following, we first present the submodular [18],
and then describe submodular component functions and
the simliarity-aware greedy algorithm used in SSMM.

Definition 1 (Submodular). Given a finite set V, a function
f:2Y — R is submodular if for any set A C B C V, and any
element v € V\ B, f satisfies: f(AJ{v}) — f(A) > f(BU
{v}) = f(B).

This means that the benefit of adding v to set A is more
than the benefit of adding v to a larger set B O A.

Submodular Component Functions. If a series of functions
fii =1,2,...,m) are submodular, their weighted sum
> Aifi is also submodular where); is non-negative. In
BEES, we design F(S) as the weighted sum of multiple
submodular component functions, i.e., F(S) = >_1"; i fi(9),
Ai > 0. Nevertheless, good image batch summaries can be
characterized by two general properties, i.e, coverage and
diversity [33], [34]. Thus we build the coverage and diver-
sity component functions.

Coverage Fumction. A summary with good coverage
allows all distinct contents in the batch to have their corre-
sponding representatives in the summary. The summary
coverage can be quantified by the sum of the similarity
between image ¢ in V and the most similar image j in S
which is formulated into fe,, = >,y Maxjesw; ;.

Diversity Function. A summary with good diversity does
not contain multiple images that are similar to each other.
As mentioned above, we use SSMM to partition the graph

ZUO ET AL.: BANDWIDTH AND ENERGY EFFICIENT IMAGE SHARING FOR SITUATION AWARENESS IN DISASTERS 21

G into b subgraphs: g1, g2, . . ., g». I; is the set of images in the
subgraph g;. A better summary covers more subgraphs and
contains fewer images in the same subgraph. We define the
diversity function fy;, = Z N(S, ;). If S and I; share no
element, N(S, ;) = 0. Otherw1se, N(S, I)=1

Similarity-Aware Greedy Algorithm. We show how to
determine the submodular function F(S) and the budget b
above. We can generate the unique image subset using the
greedy algorithm as shown in Algorithm 1.

Algorithm 1. The Similarity-Aware Greedy Algorithm

Input: Submodular function: F(), The weighted graph
G = {V, E,w}, the remaining energy Ep;.

Output S, where k is the number of iterations.

: Determine the threshold T, based on Ey,;;

: Partition graph G using T,,;

Get the number of partitioned subgraphs b;

Choose v; arbitrarily;

Sy —wvy;

: while |S;| < bdo

Choose v; € arg max,,,iev\SiF(Si U {’Uj})}

Sip1 — S U {vi};

L— 1+ 1;

: end while

SO RPN

—_

4.3 Approximate Image Uploading

By carrying out the redundancy detection, redundant
images are eliminated and the unique images need to be
uploaded. Nevertheless, the images taken by smartphones
are typically large-size. The average size of high-quality
images taken by modern smartphones can be more than
2 MB [16]. Uploading the large-size images consumes too
much bandwidth and energy. We argue that the high reso-
lution and quality of images are not necessary for such
disaster environments due to the constrained energy and
real-time transmission requirements [30]. We hence explore
how to compress the images to reduce their file size before
uploading. There are two kinds of image compression
methods, as described in the following.

Quality Compression. Quality compression uses mathemat-
ical operations to convert pixels of an image from the spatial
domain into the frequency domain for reducing the required
storage space of an image, which does not change the resolu-
tion of an image. Our experiments explore the relationship
between the file size and compression proportion in quality
compression. The compression proportion in quality com-
pression denotes the compression degree on image quality. A
larger compression proportion means compressing an image
more aggressive. There are many quality image compression
standards, such as, JPEG [35], PNG [36] and WebP [37]. We
use JPEG as a concrete example due to its widespread use.
JPEG is a lossy compression method. We argue that the slight
loss in image quality is acceptable in such disaster environ-
ments [30]. In JPEG, the range of compression proportion is
from 0 to 1. When the compression proportion is 0, the image
is not compressed; when the compression proportion is 1, the
image is compressed to the utmost extent.

Resolution Compression. Resolution compression aims to
directly reduce the resolutions of images to reduce the
file size. We also perform experiments to explore the

200

)
=3
S

—-100 images
—— 100 images

—m—200 images
—a—300 images
SSIM

0.1 02 03 0.4 05 0.6 0.7 0.8 09 1
Compression Proportion

-#-200 images

i

o
9
S

—4-300 images

NISS
=)
=]

o
%
Total Sizes (MB)

Total Sizes (MB)

(%)
S
T

0.7 o L vy O
0 0.102030.40.50.60.7 0809
Compression Proportion

(a) Quality compression (b) Resolution compression

Fig. 6. The influences of quality compression and resolution compres-
sion to bandwidth overheads.

relationship between the file size and resolution compres-
sion proportion. The resolution compression proportion is
defined as the ratio of the decrement in the length or width
of the resolution of the compressed image to those of the
original resolution. For example, an image with the resolu-
tion 1000 * 500 is compressed to 800 * 400, where the com-
pression proportion is 0.2.

We respectively compress 100,200,300 images with differ-
ent compression proportions using JPEG and resolution com-
pressions, and then upload them from smartphones to the
servers. Their bandwidth overheads are shown in Fig. 6. We
use the SSIM (Structural SIMilarity) index [38], which is a well-
known method for image quality assessment, to evaluate the
influence of different quality compression proportions on
image quality as shown in Fig. 6a. We observe that quality
compression can significantly reduce bandwidth overheads
while also causes the decrease of image quality. Due to causing
the slight loss in image quality, we suggest to compress the
image quality with a fixed compression proportion, i.e., 0.85. If
the compression proportion is larger than 0.85, the image qual-
ity will be significantly decreased, as shown in Fig. 6a.

As shown in Fig. 6b, resolution compression can also
obtain significant bandwidth savings. The reduced resolu-
tions are unrecoverable. Therefore, it is a tradeoff between
the bandwidth overhead and the image resolution. In order
to obtain a suitable tradeoff, we propose an energy-aware
adaptive uploading (EAU) scheme to adaptively adjust the
resolution compression proportion based on £j,. When the
energy is sufficient, BEES aims to upload higher-resolution
images; Otherwise, to save energy, BEES uploads the lower-
resolution images, which also results in more images to be
uploaded regardless of the low resolution. In the EAU
scheme, we describe the relationship between the resolution
compression proportion (C,) and Ej, as a linear function.
Specifically, to ensure a relatively high resolution even in
the case of low energy, we design the function as
C, = 0.8 — 0.8 * Ejyy. For example, when Ej; is 5 percent, C,
is 0.76. For a smartphone with 8 million-pixels camera tak-
ing 2448 x 3264px photos, the resolutions of the compressed
photos are still 588 x 783px while reducing about 87 percent
file size compared with Ej,; = 100 percent.

4.4 Geographic Coordinate Based Index Partition

A cloud server can receive a large number of images
uploaded by volunteers in disasters. To support the similar
image detection, the cloud server needs to index the fea-
tures of these images. Nevertheless, with the continuous
increase of the number of received images, the size of the

22 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.T1,

The search range
.

< > Animage

YA

Latitude
L]

B
JZR

N—]

2R

Longitude

Fig. 7. The geographic coordinate based index partition. (The red points
are the geographic coordinates of the queried images, and the red
circles are the corresponding search ranges.)

server index significantly increases, thus increasing the
response time of querying similar images.

To improve the query performance of the server index,
we propose a geographic coordinate based index partition-
ing (GIP) scheme. Specifically:

1) In the server side, when building the feature index,
we first partition the map of the disaster area into
the grids with the same size based on the longitude
and latitude, as shown in Fig. 7. Thus each grid has a
range in longitude and latitude, e.g., a grid covers
the area from 2.311 to 2.312 degrees longitude and
from 48.855 to 48.856 degrees latitude. The server
then stores the image features of each image into its
corresponding grid based on the longitude and lati-
tude of the image. In each grid, the server respec-
tively creates an independent feature index by using
any existing approximate query index techniques,
e.g., locality sensitive hashing (LSH) [39]. Thus the
full feature index is partitioned into many indepen-
dent small indexes each in a grid.

2) In the smartphone side, when taking pictures, the
current geographic coordinates of images, i.e, lati-
tudes and longitudes, are usually recorded in the
EXIF headers of generated JPEG photographs [5]. We
can simply extract the latitude and longitude data
from the headers of images. When uploading the
image features of an image for redundancy detection,
we also upload the geographic coordinate of the
image. After receiving the image features along with
the geographic coordinate, the server only needs to
query several grids instead of the full index. The que-
ried grids are determined by the geographic coordi-
nate of the queried image and a distance R.

The distance R is called effective distance, which means
two images cannot be similar if the actual distance of their
geographic coordinates is larger than R [40]. In practice, for
any two photographers, if the actual distance between two
photographers is larger than R, they cannot take pictures
for the same objects. Therefore, to search the similar images
of an image, we only need to query the grids that are cov-
ered by a circle of which center is the geographic coordinate
of the image and radius is R, without affecting the query
precision. To achieve the goals of searching at most four
grids for any queried images and minimizing the area of
each grid, it is easy to obtain that the length and width of
each grid should be 2R. For example, as shown in Fig. 7, if a
query image locates at the center of a grid (e.g., the point

JANUARY 2019

A), we only need to search one grid; if a query image locates
at the midpoint of a boundary (e.g., the point B), we need to
search the two adjacent grids; if a query image locates other
points (e.g., the point C), we need to search four grids.

The GIP scheme is able to improve the query perfor-
mance in terms of the following points:

e Reducing the search range. In the traditional full index
schemes [4], [16], the sever needs to query similar
images in the full feature set. By using the proposed
GIP scheme, we only need to search at most four par-
titioned grids, thus reducing the query time.

e Reducing the false positive. A real case possibly exists
that an object is visually similar to another object but
they are in two different geographic locations. Tak-
ing pictures for the two objects in different geo-
graphic locations produces the false similar images
which indicate two or multiple images are consid-
ered to be similar in similarity detection but do not
really contain the same objects. By using the pro-
posed GIP scheme, we can isolate the similar objects
in different geographic coordinates to avoid produc-
ing false similar images.

e No affecting the query precision. Even though the
search range is reduced in the proposed GIP scheme,
the query precision is not reduced. the reason is that
the similar images of the queried image must be in
the search range.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup

The BEES prototype consists of two parts, i.e., the client appli-
cation and cloud server. The client application is programmed
in Java and native C++ (JNI) with about 1,000 source lines of
code (SLoC), and linked with the openCV library [41] for fea-
ture extraction. We reduce the size of the client APP, which is
only 593 KB in the latest version. The size of the APP is smaller
than that of an image, and users can download it with very
low bandwidth overhead in disasters. We install the client
APP into the Android-based smartphones for evaluation. The
smartphone is equipped with Helio X10 8-core CPU at 2.2
GHz, a 32 GBROM and a 3 GB RAM, in which the battery
capacity is 3150 mAh with a voltage of 3.8 Volts. The
server is programmed in C++ with about 1,600 SLoC, and
also uses openCV library to extract image features. The
server is implemented in the Ubuntu 14.04 operating sys-
tem running on a 16-core CPU each at 3.40 GHz, with a
32 GB RAM and a 2 TB hard disk.

Network bandwidth is very limited in capacity in the
disaster environments. Existing schemes [2], [42], [43] limit
their bandwidth to several hundred Kbps to simulate the
low bandwidth. Hence, in our experiments, we connect
smartphones into the WiFi of a computer, and setup the
Charles tool [44] in the computer to control the network
bandwidth that smartphones use. The transmission band-
width of each smartphone fluctuates from OKbps to
512Kbps to emulate the low-bandwidth network. Moreover,
we setup the PowerTutor tool [45] in smartphones to evalu-
ate energy consumptions of applications.

Three real-world imagesets are used in our experimental
evaluation.

ZUO ET AL.: BANDWIDTH AND ENERGY EFFICIENT IMAGE SHARING FOR SITUATION AWARENESS IN DISASTERS 23

o The Kentucky imageset [29]: The imageset contains
10,200 images in 2,550 groups. In each group, four
images are taken from the same object or scene
which can be considered to be similar to each other.
Since the imageset is widely used for evaluating the
precision of similarity detection [16], [29], we also
use it to evaluate precision in Section 5.2.1.

o The disaster imageset: We use the Google and Bing
image search services to collect 1,000 images taken in
Nepal earthquake in 2015 [6]. The imageset is used
for general tests in Sections 5.2.2,5.2.3, and 5.2.4.

e The Paris imageset [46]: The imageset contains 501,356
geotagged images, which is collected from Flickr
and Panoramio using a geographic bounding box
around the inner city of Paris. The geographical posi-
tions of images in the Paris imageset have a real-
world distribution. Due to the large number of
images, the imageset is used for large-scale tests in
Sections 5.2.2 and 5.2.5.

Note that for the following experiments, to simulate real
conditions, all used images are resized to about 700KB
which reflects the average size of normal-quality images
taken by smartphones [16].

For evaluating the precision of similarity detection, we
compare BEES with the state-of-the-art algorithms for similar-
ity detection, i.e., SIFT and PCA-SIFT. For evaluating the
energy overhead, delay and bandwidth overhead, we exam-
ine a baseline scheme, i.e., directly uploading images. We also
compare BEES with the state-of-the-art schemes for image-
based SA in disasters, i.e., SmartEye [4] and MRC [16]. Due to
our lack of the source code of MRC, we implement the MRC
based on the scheme described in its paper [16] for evaluation.

5.2 Results and Analysis

5.2.1 Precision of Similarity Detection

To evaluate the effectiveness of similarity detection, we use
the measure of precision (also called positive predictive
value), which is the fraction of retrieved instances that are
relevant. In the image similarity detection, we can define
precision as:

[{similar images}| () [{retrieved images}|

G))

preasion = {retrieved images}|

In the Kentucky imageset, it is easy to determine if a que-
ried image is similar to existing ones. Thus we evaluate the
precision using the Kentucky imageset that was widely
used for evaluating the precision [16], [29]. We select one
image from each group as the queried image. Without loss
of generality, we respectively execute 500, 1000, and 1500
queries to compute the average precisions. As the baseline
comparison, we also evaluate the precisions of SIFT and
PCA-SIFT. Moreover, due to the energy-aware adaptive bit-
map compression (presented in Section 4.1) in BEES, £y is
also related with the precision. We also evaluate the preci-
sions of BEES under the conditions of different Ej,;. Preci-
sions of all schemes are normalized to that of SIFT in Fig. 8.

As shown in Fig. 8, SIFT obtains the highest precision
and the precision of SURF is close to that of SIFT. Compared
with SIFT, the precision in BEES(100) is higher than 90.3

B SIFT BPCA-SIFT BSURF B BEES(100)

9 EBEES(70) BBEES(40) DOBEES(10)

E 1

z 80

g

& 60

=

£ 40

s

£ 20

5

Z 0

500 1000 1500

Query times

Fig. 8. The normalized precision (BEES(X) means the BEES under the
condition of X% Ey).

percent, which is close to PCA-SIFT. Moreover, we observe
that the precision of BEES slightly decreases with the
decrease of Ej,, since BEES improves the energy efficiency
with a slight decrease in precision in the low battery status.
BEES(10) obtains over 84.9 percent precision compared with
SIFT. SIFT, SURF and PCA-SIFT obtain a little higher preci-
sion than BEES that uses ORB, which however are not suit-
able in the disaster environments to be uploaded and used
to detect similarity due to their huge bandwidth and energy
overheads as shown in Section 2.

5.2.2 Energy Overhead

1) Energy Overhead. We investigate the impact of different
schemes on energy overheads. SmartEye, MRC and BEES
consume extra energy to compute and upload image features
for similarity detection while saving energy by reducing
redundant images to be transmitted, compared with Direct
Upload. Thus different redundancy ratios of uploaded
images produce different energy overheads. Therefore, we
capture the energy overheads when the uploaded images are
at different redundancy ratios. The redundancy ratio is
defined as the ratio of the number of redundant images in the
uploaded images to the total number of uploaded images.

We select an image batch with 100 images from the disas-
ter imageset as the uploaded images and store the images in
the smartphone. We set different cross-batch redundancy
ratios 0, 25, 50, and 75 percent, by adding and removing the
redundant images (similar to the uploaded images) into the
servers. Note that the redundant images added in the serv-
ers have the high similarity (i.e., more than 0.3 computed by
Equation (1)) with the uploaded images, which ensures
all redundant images can be detected by three different
schemes for fair comparisons. Moreover, 10 in-batch similar
images exist in the 100 images and do not have similar
images in the servers, thus clearly showing the benefit of in-
batch redundancy elimination in BEES. We respectively
upload the 100 images using the four schemes and capture
their energy overheads.

As shown in Fig. 9, the higher the cross-batch redun-
dancy ratio is, the less energy SmartEye, MRC and BEES
consume due to eliminating redundant images. The energy
overhead of SmartEye is more than that of MRC, since
SmartEye extracts image features using PCA-SIFT that con-
sumes more energy than MRC to extract ORB features.
BEES produces much lower energy overhead than Smar-
tEye and MRC, since in-batch redundancy reduction and
using approximate image sharing in BEES decrease the
amounts of the uploaded data, thus obtaining significant

24 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.T1,

[\
(=]

B Direct Upload B SmartEye
EBEES

OMRC

—
W

[9)}

Energy Overhead (100J)
S

(=]

0% 25% 50%

Redundancy Ratio

75%

Fig. 9. Energy overhead.

energy savings. Compared with MRC, BEES reduces 67.3—
70.8 percent energy overheads. Compared with Direct
Upload, BEES reduces 67.6-85.3 percent energy overheads.
Even in the worst case with no cross-batch redundancy,
BEES also obtains 67.6 percent energy saving while Smar-
tEye and MRC consume more energy than Direct Upload.

2) Energy Savings from Energy-aware Adaptation. Energy-
aware adaptation aims to save energy and extend the bat-
tery lifetime when smartphones are in the low battery
status. To verify the energy benefits of energy-aware adap-
tive schemes in BEES, we examine the energy overheads
when smartphones contain different amounts of remaining
energy. We use the same 100 image collection (used in
Section 5.2.2(1)) with 10 in-batch similar images. We set the
same cross-batch redundancy ratio to be 25 percent for each
uploading. When the remaining energy of the smartphone
is 100, 70, 40, and 10 percent, we respectively upload the
100 images using BEES and examine their energy overheads
of feature extraction, uploading features and images.

As shown in Fig. 10, the total energy overhead, the
energy overheads of feature extraction and image upload-
ing decrease with the decrease of Ej, due to energy-aware
adaptation. The energy overhead of uploading features is
small, due to the lightweight ORB features.

3) Battery Lifetime. We investigate the impact of different
schemes on the battery lifetime of smartphones. Moreover,
in order to demonstrate the efficiency of energy-aware adap-
tive schemes in BEES, we also examine the battery lifetime
using BEES-EA. BEES-EA represents BEES without energy-
aware adaptive schemes in which BEES does not adjust its
behaviors based on the remaining energy. For keeping the
same conditions in each scheme, the initial energy of battery
is full. During uploading images in each scheme, all applica-
tions in the smartphone, except BEES App and the system-
related programs, are always closed and the screen is always
bright. We select 150-group images from the Paris imageset,
and store them in the smartphone in advance. Each group
contains 40 images. We set the cross-batch redundancy ratio
of each group to about 50 percent by adjusting the server
index. There are almost no in-batch similar images in each
group. We upload one group every 20 minutes, until the
smartphone battery is exhausted. We record the remaining
energy of battery every 20 minutes. Thus the battery lifetime
of a smartphone is evaluated by computing the time from
the smartphone starts up to its battery is exhausted.

As shown in Fig. 11, with the increase of the runtime of the
smartphone, the remaining energy linearly/near-linearly
decreases in Direct Upload, SmartEye, MRC, and BEES-EA.

JANUARY 2019

S

O Uploading Images
® Uploading Features

w
T

B Feature Extraction

11

Energy Overhead (100J)
-

o

100% 70% 40% 10%
The Remaining Energy
Fig. 10. Energy-aware adaptation.
100 g -
9 A -e-Direct Upload
=80 f ——SmartEye
2 +MRC
& 60 f -=-BEES-EA
R —BEES
£ 40 |
=) ¥
5.t
& 20 F
© r
=
0 ﬁl L I u
0 4 8 12 16 20 24 28 32 36

Runtime (hours)

Fig. 11. Battery lifetime.

The relationship of the runtime and E},; in BEES is a curve
instead of a straight line. The slope of the relationship curve
in BEES slowly decreases with the decrease of Ej,, since
energy-aware adaptive schemes in BEES adaptively adjusts
the behaviors based on E},; to save energy and slow down
the speed of energy consumption. SmartEye, MRC, BEES-
EA, and BEES, respectively extend 18.0, 25.7, 93.4, and 133.1
percent battery lifetime, compared with Direct Upload.
Compared with MRC, BEES extends 84.3 percent battery life-
time. Compared with BEES-EA, BEES extends 19.8 percent
battery lifetime due to energy-aware adaptive schemes.

5.2.3 Bandwidth Overhead

When examining the energy overheads of the four schemes
in Section 5.2.2(1), we record the bandwidth overhead of
each scheme. As shown in Fig. 12, the higher the cross-
batch redundancy ratio is, the lower bandwidth overheads
SmartEye, MRC, and BEES consume. MRC consumes a
little more bandwidth overhead than SmartEye due to
requiring thumbnail feedback. BEES is superior to both
SmartEye and MRC due to not only further reducing in-
batch redundancy but also leveraging approximate image
sharing, thus reducing much more bandwidth overheads.
Compared with SmartEye, BEES reduces 77.4-79.2 percent
bandwidth overheads.

5.2.4 Delay

We compare the delays of different schemes in this subsec-
tion. We use the same image collection with 100 images
used in Section 5.2.2(1). There are 10 in-batch similar images
in the 100 images. We set the same cross-batch redundancy
ratio (50 percent) for each scheme. The network bitrate,
under which the smartphone communicates with the serv-
ers, affects the uploading delay. Thus we also capture the
delay under different network bitrates with the medians

ZUO ET AL.: BANDWIDTH AND ENERGY EFFICIENT IMAGE SHARING FOR SITUATION AWARENESS IN DISASTERS 25

OMRC ®BEES

m Direct Upload @ SmartEye

0
(=}

(=)
(=]

Bandwidth Overhead (MB)
SRS
(=] f=]

(=]

0% 25% 50%

Redundancy Proportion

75%
Fig. 12. Network bandwidth overhead.

128 Kbps and 512 Kbps, besides 256 Kbps. The delay con-
sists of the time of extracting image features, uploading fea-
tures and images.

As shown in Fig. 13, we observe that Direct Upload produ-
ces the highest delay, and SmartEye, MRC, and BEES reduce
the delay in different degrees via reducing redundancy. The
average delay of SmartEye is more than that of MRC, since
SmartEye extracts image features using PCA-SIFT which con-
sumes more time than MRC using ORB. BEES reduces the
image uploading time by further reducing in-batch redun-
dant images and reduces the feature extraction time by using
energy-aware feature extraction, and also obtains much more
time saving by using energy-aware image compression before
uploading images, thus being superior to SmartEye and MRC.
As shown in Fig. 13, BEES reduces 83.3-88.0 percent average
delay compared with Direct Upload, and reduces 70.4-77.8
percent average delay compared with MRC. In general, the
extremely low delay of BEES meets the needs of disaster envi-
ronments in terms of real-time transmission.

5.2.5 Coverage

When a disaster occurs, the images uploaded by smart-
phones are used for SA. However, the energy of smart-
phone battery is limited. It is important for the energy-
constrained smartphones to use the limited energy to collect
more information. We use the region area of the situation
awareness (i.e., the coverage of uploaded images) to quan-
tify the amount of information obtained by the uploaded
images, and evaluate the coverage of BEES.

We use the Paris imageset to evaluate the coverage, since
each image in the imageset is geotagged to facilitate its map-
ping in the real map. Since the complete set of the Paris
imageset is too large, we select a subset as the test imageset
covering the area from 2.31 to 2.34 degrees east longitude
and from 48.855 to 48.872 degrees north latitude. The test
imageset consists of 165,539 images which have 58,818

48856 @ 488561 N

48,858 b oAb 488581 -4
48.86 48.86

48,802 48862

It 5
& '.. - A P e e
ELETIEY Shed L SLBRIE: “S) A 4R.864 F 3}
48866 b X 48 866 F .Ej»‘}-' B
b e
48868 by 48868 |
L ’

4887

48.872

1] 48.872

| 48,87 &

50
~&-Direct Upload
% 40 -8-SmartEye
> MRC
< 30 |
A S -4-BEES
20
<
5]
Z10]
A—m—
. = —A
128Kbps 256Kbps 512Kbps

Network Bitrate

Fig. 13. The average delay of uploading an image.

unique locations (i.e., longitudes and latitudes) in the map.
The densest location has 5,399 images. The real distribution is
shown in Fig. 14a. We equally divide the 165,539 images into
25 groups and respectively store them in 25 smartphones. The
initial energy of all 25 smartphone batteries is full. 40 images
are considered as a group in the smartphones. The 25 smart-
phones respectively upload an image group every 20 minutes.
The servers add the features of the uploaded images into the
index for redundancy detection once receiving the images
from BEES clients. After the batteries of all the smartphones
are exhausted, we map all the images that the servers receive
in the map based on their geotags.

Using Direct Upload, the smartphones upload 49,437
images in total. The uploaded images have 23,399 unique
locations in the map. Fig. 14b shows the coverage of the
images uploaded using Direct Upload in the map. In BEES,
the smartphones upload 58,750 images which have 46,122
unique locations in the map. Fig. 14c shows the coverage of
the images uploaded using BEES in the map. BEES uploads
18.8 percent more images while has 97.1 percent larger cov-
erage (i.e., the number of unique locations covered) than
Direct Upload, since BEES reduces the redundant images
and uses submodular maximum model to efficiently sum-
marize the uploaded image batch.

5.2.6 The Query Performance of Feature Indexes

To show the benefits of our proposed geographic coordinate
based index partitioning (GIP) scheme, we compare the
query performance of the feature indexes with and without
our proposed GIP scheme. For the feature index without the
GIP scheme, we build an index for the full feature set using
DLSH [47], a state-of-the-art LSH scheme. For the feature
index with the GIP scheme, we first partition the full feature
set into grids using the GIP scheme and then build the index
in each grid using DLSH. We use the same subset of the
Paris imageset as that used in Section 5.2.5. Since the

48856 F
ABHSE b AR
48.86 :
48.862
48.864 £
8866) 47
43168 b

1 48.87

231 2315 232 2325 233 12335 234 231 2315 232

(a) The test imageset

2325 233 2335 2M

(b) Direct Upload

o 48.872
231 2315 232 2335 233

(c) BEES

2335 23

Fig. 14. Coverage. (The x axis is east longitude and the y axis is northern latitude. The values beside the color table are the index of 2. For instance,

the locations colored by the color corresponding to 6 have 2°(64) images.)

26 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.T1,

- Index w/o GIP B Index w/ GIP
)
>
Q
5
<
|
2
[}
=
o
9]
an
z . .
500 1000 1500
Query Times

Fig. 15. The average query time in the indexes with and without our pro-
posed GIP scheme.

maximum distance between two similar images in this
imageset is not larger than 200 meters, we set the effective
distance R to 200 meters. Thus the evaluated image set is par-
titioned into 8 * 16 grids. We respectively do 500, 1000, and
1500 queries to the two indexes, and evaluate the average
query latency. For a queried image, we aim to find its most
similar image that is used for the cross-batch redundancy
detection as presented in Section 4.2.1, via querying the fea-
ture indexes. The experimental results are shown in Fig. 15.

By comparing the average query latency in the indexes
with and without our proposed GIP scheme, we observe
that using the GIP scheme reduces the query latency by 85
percent on average, i.e., speeding up the query by 6.6x. The
reason is that the GIP scheme efficiently reduces the search
range of each query and the search range (four grids) using
the GIP scheme is about 1/32(= 8% 16/4) of the full set.
Moreover, the GIP scheme also reduces the false similar
images as presented in Section 4.4, which produces fewer
query results compared with querying the full set via
DLSH. In the set with fewer query results, computing the
most similar image consumes less time.

6 RELATED WORK

Data Deduplication. Data deduplication is widely used in data
storage systems, such as backup and archive storage [48],
[49], [50], primary storage [51], [52] and cloud storage [53],
[54], [55], to save storage space via eliminating exact-matching
redundancy. Deduplication is also used in network environ-
ments [56], [57] to save network bandwidth. Unfortunately,
deduplication is inefficient to detect similar images, since
deduplication detects redundancy in the byte level while
images are similar in the content level. A small difference in
the content may cause significantly different byte-level encod-
ing [3]. BEES shares the similar design goals but at the content
level and focuses on identifying redundant images.
Content-Based Redundancy Elimination in Disaster Environ-
ments. Several schemes have been proposed to eliminate the
image redundancy in disaster environments, which can be
divided into two categories. One focuses on eliminating
redundant images in delay tolerant networks (DTNs). Pho-
toNet [2] presents a content-based redundancy elimination
routing scheme that uses image metadata, i.e., geotags and
color histograms of images, to approximately evaluate and
eliminate similar images in DTNs. Wu et al. [15] propose a
resource-aware framework using image metadata to elimi-
nate redundant images in the DTNs. CARE [3] uses image
features to perform more accurate similarity detection than

JANUARY 2019

PhotoNet in DTNs. The other aims to eliminate redundant
images in the source (i.e., smartphones) by uploading image
features, which avoids redundant images passing into the
bandwidth-constrained networks. SmartEye [4] proposes
in-network deduplication based on software defined net-
work (SDN) to eliminate redundant images in the source.
MRC [16] proposes a framework combining global image
features and local image features to detect and eliminate
redundant images in the source. Both SmartEye and MRC
detect similar images by querying the server index that
can only eliminate the cross-batch redundancy. Besides
eliminating the cross-batch redundancy, BEES builds the
submodular maximum model to eliminate the in-batch
redundant images. More importantly, unlike all existing
work, BEES is a complete system which proposes the
approximate image sharing and energy-aware adaptation
to obtain higher bandwidth and energy efficiency.

7 CONCLUSION

In this paper, we propose a bandwidth- and energy- effi-
cient image sharing system, called BEES, for real-time SA in
disasters. BEES reduces not only the cross-batch redundant
images but also in-batch redundant images in the source, and
further leverages approximate image sharing to trade the the
quality of computation results in content-based redundancy
elimination for higher bandwidth and energy efficiency.
Moreover, the energy-aware adaptive schemes are intro-
duced in BEES to offer an objective and quantitative tradeoff
between computation quality and efficiency based on the
remaining energy. Extensive experimental results demon-
strate that BEES reduces more than 67.3 percent energy over-
head, 77.4 percent bandwidth overhead, 70.4 percent average
image uploading delay, and extends 84.3 percent battery life-
time, compared with the state-of-the-art work.

ACKNOWLEDGEMENTS

This work is supported by National Key Research and Devel-
opment Program of China under Grant 2016YFB1000202,
and National Natural Science Foundation of China (NSFC)
under Grant No. 61772212 and 61502190. The preliminary
version appears in the Proceedings of the 37th International
Conference on Distributed Computing Systems (ICDCS),
2017, pages: 1510-1520.

REFERENCES

[1] Big Data and Disaster Management: A Report from the JST/NSF
Joint Workshop, 2015. [Online]. Available: https:/ /goo.gl/0gath8

[2] M.Y.S. Uddin, H. Wang, F. Saremi, G.-J. Qi, T. Abdelzaher, and
T. Huang, “PhotoNet: A similarity-aware picture delivery service
for situation awareness,” in Proc. IEEE 32nd Real-Time Syst. Symp.,
2011, 317-326.

[3] U. Weinsberg, Q. Li, N. Taft, A. Balachandran, V. Sekar,
G. JIannaccone, and S. Seshan, “CARE: Content aware redundancy
elimination for challenged networks,” in Proc. ACM Workshop Hot
Topics Netw. (HotNets), 2012, pp. 1-6.

[4] Y. Hua, W. He, X. Liu, and D. Feng, “SmartEye: Real-time and
efficient cloud image sharing for disaster environments,” in Proc.
IEEE Conf. Comput. Commun., 2015, pp. 1616-1624.

[5] K. Toyama, R. Logan, and A. Roseway, “Geographic location tags
on digital images,” in Proc. 11th ACM Int. Conf. Multimedia, 2003,
pp. 156-166.

[6] How Social Media Is Helping Nepal Rebuild After Two Big Earth-
quakes, 2015. [Online]. Available: https://goo.gl/CbIMzT

https://goo.gl/0gath8
https://goo.gl/CbIMzT

ZUO ET AL.: BANDWIDTH AND ENERGY EFFICIENT IMAGE SHARING FOR SITUATION AWARENESS IN DISASTERS 27

(7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[New Scientist] Social Media Helps Aid Efforts after Typhoon
Haiyan, [Online]. Available: https:/ /goo.gl/yJMtns

K. Fall, “A delay-tolerant network architecture for challenged
internets,” in Proc. ACM Conf. Appl. Technol. Architectures Protocols
Comput. Commun., 2003, pp. 27-34.

S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant
network,” in Proc. ACM Conf. Appl. Technol. Architectures Protocols
Comput. Commun., 2004, pp. 145-158.

S. M. George, W. Zhou, H. Chenji, M. Won, Y. O. Lee, A. Pazarloglou,
R. Stoleru, and P. Barooah, “DistressNet: A wireless ad hoc
and sensor network architecture for situation management in disaster
response,” IEEE Commun. Mag., vol. 48, no. 3, pp. 128-136, Mar. 2010.
S. Marti, T.J. Giuli, K. Lai, and M. Baker, “Mitigating routing mis-
behavior in mobile ad hoc networks,” in Proc. ACM 6th Annu. Int.
Conf. Mobile Comput. Netw., 2000, pp. 255-265.

Y. Wang, W. Hu, Y. Wu, and G. Cao, “SmartPhoto: A resource-
aware crowdsourcing approach for image sensing with smart-
phones,” in Proc. ACM 15th ACM Int. Symp. Mobile Ad Hoc Netw.
Comput., 2014, pp. 113-122.

“ChangeWave research,” 2011. [Online]. Available: http://www.
changewaveresearch.com

D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel, et al., “Finding a
needle in haystack: Facebook’s photo storage” in Proc. Symp. Oper-
ating Syst. Des. Implementation, 2010.

Y. Wu, Y. Wang, W. Hu, X. Zhang, and G. Cao, “Resource-aware
photo crowdsourcing through disruption tolerant networks,” in
Proc. IEEE 36th Int. Conf. Distrib. Comput. Syst., 2016, pp. 374-383.
T. Dao, A. K. Roy-Chowdhury, H. V. Madhyastha, S. V.
Krishnamurthy, and T. La Porta, “Managing redundant content in
bandwidth constrained Wireless networks,” in Proc. ACM 10th
Int. Conf. Emerging Netw. Experiments Technol., 2014, pp. 349-362.
P. Zuo, Y. Hua, X. Liu, D. Feng, W. Xia, S. Cao, J]. Wu, Y. Sun, and
Y. Guo, “BEES: Bandwidth-and energy-efficient image sharing for
real-time situation awareness,” in Proc. 37th Int. Conf. Distrib. Com-
put. Syst., 2017, pp. 1510-1520.

J. Edmonds, Combinatorial Structures and their Applications, New
York, NY, USA: Gordon and Breach, 1970, pp. 69-87.

M. Douze, H. Jégou, H. Sandhawalia, L. Amsaleg, and C. Schmid,
“Evaluation of gist descriptors for web-scale image search,” in
Proc. Int. Conf. Image Video Retrieval, 2009, Art. no. 19.

D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. |. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.

D. A. Lisin, M. A. Mattar, M. B. Blaschko, E. G. Learned-Miller,
and M. C. Benfield, “Combining local and global image features
for object class recognition,” in Proc. IEEE Comput. Society Conf.
Comput. Vis. Pattern Recognit. Workshops, 2005, pp. 47-47.

Y. Ke and R. Sukthankar, “PCA-SIFT: A more distinctive repre-
sentation for local image descriptors,” in Proc. IEEE Comput. Soci-
ety Conf. Comput. Vis. Pattern Recognit., 2004, pp. 1I-506-11-513.

H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in Proc. Eur. Conf. Comput. Vis., 2006, pp. 404—417.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An effi-
cient alternative to SIFT or SURF,” in Proc. IEEE Int. Conf. Comput.
Vis., 2011, pp. 2564-2571.

E. Rosten and T. Drummond, “Machine learning for high-speed
corner detection,” in Proc. 9th Eur. Conf. Comput. Vis., 2006,
pp. 430-443.

M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary
robust independent elementary features,” Proc. 11th Eur. Conf.
Comput. Vis., 2010, pp. 778-792.

O. Miksik and K. Mikolajczyk, “Evaluation of local detectors and
descriptors for fast feature matching,” in Proc. IEEE 21st Int. Conf.
Pattern Recognit., 2012, pp. 2681-2684.

K. Mikolajezyk and C. Schmid, “A performance evaluation of
local descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 10, pp. 1615-1630, Oct. 2005.

D. Nister and H. Stewenius, “Scalable recognition with a vocabu-
lary tree,” in Proc. IEEE Comput. Society Conf. Comput. Vis. Pattern
Recognit., 2006, pp. 2161-2168.

S. Mittal, “A survey of techniques for approximate computing,”
ACM Comput. Surveys, vol. 48, no. 4, 2016, Art. no. 62.

A. Rahimi, L. Benini, and R. K. Gupta, “Spatial memoization: Con-
current instruction reuse to correct timing errors in SIMD
architectures,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 60,
no. 12, pp. 847-851, Dec. 2013.

H. Lin and J. Bilmes, “Learning mixtures of submodular shells
with application to document summarization,” in Proc. 28th Conf.
Uncertainty Artif. Intell., 2012, pp. 479-490.

[33]

[34]

[35]
[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

S. Tschiatschek, R. K. Iyer, H. Wei, and J. A. Bilmes, “Learning mix-
tures of submodular functions for image collection summarization,”
in Proc. 27th Int. Conf. Neural Inf. Process. Syst., 2014, pp. 1413-1421.

I. Simon, N. Snavely, and S. M. Seitz, “Scene summarization for
online image collections,” in Proc. IEEE 11th Int. Conf. Comput.
Vis., 2007, pp. 1-8.

G. K. Wallace, “The JPEG still picture compression standard,”
Commun. ACM, vol. 34, no. 4, pp. 30-44, 1991.

PNG (Portable Network Graphics) Specification Version 1.0, 1997.
[Online]. Available: http:/ /tools.ietf.org/html/rfc2083

WebP: A new image format for the Web, 2015. [Online]. Available:
https://goo.gl/5pSOZ7

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.

P. Indyk and R. Motwani, “Approximate nearest neighbors:
Towards removing the curse of dimensionality,” in Proc. 30th
Annu. ACM Symp. Theory Comput., 1998, pp. 604-613.

Y. Wu and G. Cao, “Videomec: A metadata-enhanced crowd-
sourcing system for mobile videos,” in Proc. 16th ACM/IEEE Int.
Conf. Inf. Process. Sensor Netw., 2017, pp. 143-154.

OpenCV Library, [Online]. Available: https://www.opencv.org/

J. Pyke, M. Hart, V. Popov, R. D. Harris, and S. McGrath, “A tele-
ultrasound system for real-time medical imaging in resource-
limited settings,” in Prcoc. IEEE 29th Annu. Int. Conf. Eng. Med.
Biol. Society, 2007, pp. 3094-3097.

V. Popov, D. Popov, L. Kacar, and R. D. Harris, “The feasibility of
real-time transmission of sonographic images from a remote loca-
tion over low-bandwidth internet links: A pilot study,” Amer.].
Roentgenology, vol. 188, no. 3, pp. 219-222, 2007.

Web Debugging Proxy Application, 2017. [Online]. Available:
https:/ /www.charlesproxy.com/

L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang, “Accurate online power estimation and automatic bat-
tery behavior based power model generation for smartphones,” in
Proc. 8th IEEEJACMJIFIP Int. Conf. Hardware/Software Codesign
Syst. Synthesis, 2010, pp. 105-114.

T. Weyand, J. Hosang, and B. Leibe, “An evaluation of two
automatic landmark building discovery algorithms for city
reconstruction,” in Trends and Topics in Computer Vision. Berlin,
Germany: Springer, 2012, pp. 310-323.

Y. Sun, Y. Hua, X. Liu, S. Cao, and P. Zuo, “DLSH: a distribution-
aware LSH scheme for approximate nearest neighbor query in cloud
computing,” in Proc. Symp. Cloud Comput., 2017, pp. 242-255.

B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck
in the data domain deduplication file system,” in Proc. USENIX
Conf. File Storage Technol., 2008, Art. no. 18.

S. Quinlan and S. Dorward, “Venti: A new approach to archival
storage,” in Proc. USENIX Conf. File Storage Technol., 2002.

G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone,
M. Chamness, and W. Hsu, “Characteristics of backup workloads
in production systems,” in Proc. 10th USENIX Conf. File Storage
Technol., 2012, pp. 4-4.

F. Chen, T. Luo, and X. Zhang, “CAFTL: A content-aware flash
translation layer enhancing the lifespan of flash memory based
solid state drives,” in Proc. 9th USENIX Conf. File Stroage Technol.,
2011, pp. 77-90.

A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and
S. Sengupta, “Primary data deduplication-large scale study and
system design,” in Proc. USENIX Annu. Tech. Conf, 2012,
vol. 2012, pp. 285-296.

I. Drago, M. Mellia, M. M Munafo, A. Sperotto, R. Sadre, and
A. Pras, “Inside dropbox: understanding personal cloud storage
services,” in Proc. Internet Meas. Conf., 2012, pp. 481-494.

P. Zuo, Y. Hua, C. Wang, W. Xia, S. Cao, Y. Zhou, and Y. Sun,
“Mitigating traffic-based side channel attacks in bandwidth-
efficient cloud storage,” in Proc. IEEE 26th Int. Parallel Distrib.
Process. Symp. Workshops, 2018, pp. 761-761.

M. Vrable, S. Savage, and G. M. Voelker, “Cumulus: Filesystem
backup to the cloud,” ACM Trans. Storage, vol. 5, no. 4, 2009,
Art. no. 14.

A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee,
“Redundancy in network traffic: findings and implications,” ACM
SIGMETRICS Perform. Eval. Rev., vol. 37, no. 1, pp. 37-48, 2009.

H. Pucha, D. G. Andersen, and M. Kaminsky, “Exploiting similar-
ity for multi-source downloads using file handprints,” in Proc. 4th
USENIX Conf. Netw. Syst. Design Implementation, 2007, pp. 2-2.

https://goo.gl/yJMtns
http://www.changewaveresearch.com
http://www.changewaveresearch.com
http://tools.ietf.org/html/rfc2083
https://goo.gl/5pSOZ7
https://www.opencv.org/
https://www.charlesproxy.com/

28 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO. 1,

Pengfei Zuo received the BE degree in computer
science and technology from the Huazhong Uni-
versity of Science and Technology (HUST),
China, in 2014. He is currently working toward
the PhD degree majoring in computer science
and technology at the Huazhong University of
Science and Technology. His current research
interests include data deduplication, non-volatile
memory, and key-value store. He published sev-
eral papers in major journals and conferences
including the IEEE Transactions on Parallel and
Distributed Systems, USENIX OSDI, MICRO, USENIX ATC, SoCC,
ICDCS, IPDPS, MSST, DATE, HotStorage, etc. He is a student member
of the IEEE.

Yu Hua received the BE and PhD degrees in
computer science from Wuhan University, China,
in 2001 and 2005, respectively. He is a professor
with the Huazhong University of Science and
Technology, China. His research interests include
computer architecture, cloud computing, and net-
work storage. He has more than 100 papers to
his credit in major journals and international
conferences including the IEEE Transactions
on Computers, the IEEE Transactions on Paral-
lel and Distributed Systems, USENIX ATC,
USENIX FAST, INFOCOM, SC, ICDCS and MSST. He has been on
the program committees of multiple international conferences, includ-
ing USENIX ATC, RTSS, INFOCOM, ICDCS, MSST, ICNP and
IPDPS. He is the distinguished member of CCF, senior member of
ACM and IEEE and a member of USENIX.

Yuanyuan Sun received the BE degree in com-
puter science and technology from the Huazhong
University of Science and Technology (HUST),
China, in 2014, and the PhD graduate degree
majoring in computer science and technology
from the Huazhong University of Science and
Technology. Her current research interests
include queries in storage systems, semantic
hashing and metadata management. She has
published several papers in major journals and
conferences including the IEEE Transactions
on Parallel and Distributed Systems, USENIX ATC, SoCC, MSST,
ICDCS, IPDPS.

Xue Liu received the BS degree in mathematics
and MS degree in automatic control from Tsing-
hua University, Beijing, China, and the PhD
degree in computer science from the University
of lllinois at UrbanaChampaign, IL, in 2006. He is
currently an associate professor with the School
of Computer Science at McGill University, Mon-
treal, QC, Canada. His research interests include
computer networks and communications, smart
\ grid, real-time and embedded systems, cyber-
physical systems, data centers, and software
reliability. His work has received the Year 2008 Best Paper Award from
the IEEE Transactions on Industrial Informatics, and the First Place
Best Paper Award of WiSec 2011. He serves as an associate editor of
the IEEE Transactions on Parallel and Distributed Systems and editor of
the IEEE Communications Surveys and Tutorials. He is a member of the
IEEE and the ACM.

JANUARY 2019

Jie Wu received the BE degree in 2015 and Mas-
ter degree in 2018 from the Huazhong University
of Science and Technology (HUST), China. Her
current research interests include cloud storage
and data deduplication.

Yuncheng Guo received the BE degree in 2015
and Master degree in 2018 from the Huazhong
University of Science and Technology (HUST),
China. His current research interests include
non-volatile memory, algorithms of hashing, and
data analytics.

Wen Xia received the PhD degree in computer
science from the Huazhong University of Science
and Technology, China, in 2014. His research
interests include data reduction, storage systems,
and cloud computing. He has published more than
30 papers in major journals and conferences
including Proceedings of the IEEE (PIEEE), the
IEEE Transactions on Computers (TC), the IEEE
Transactions on Parallel and Distributed Systems
(TPDS), USENIX ATC, FAST, INFOCOM, MSST,
Performance, IPDPS, HotStorage, etc.

Shunde Cao received the BE degree in com-
puter science and technology from the Wuhan
University of Science and Technology, China, in
2014, and the ME degree in computer science and
technology from Huazhong University of Science
and Technology, China, in 2017. His research inter-
ests include data deduplication, content-based
similarity detection, and key-value store.

Dan Feng received the BE, ME, and PhD
degrees in computer science and technology
from the Huazhong University of Science and
Technology (HUST), China, in 1991, 1994, and
1997, respectively. She is a professor and vice
dean of the School of Computer Science and
Technology, Huazhong University of Science and
Technology. Her research interests include com-
puter architecture, massive storage systems, and
parallel file systems. She is a member of the
IEEE and the ACM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

