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Abstract—In chunk-based deduplication systems, logically consecutive chunks are physically scattered in different containers after

deduplication, which results in the serious fragmentation problem. The fragmentation significantly reduces the restore performance due

to reading the scattered chunks from different containers. Existing work aims to rewrite the fragmented duplicate chunks into new

containers to improve the restore performance, which however produces the redundancy among containers, decreasing the

deduplication ratio and resulting in redundant chunks in containers retrieved to restore the backup, which wastes limited disk bandwidth

and decreases restore speed. To improve the restore performance while ensuring the high deduplication ratio, this paper proposes a

cost-efficient submodular maximization rewriting scheme (SMR). SMR first formulates the defragmentation as an optimization problem

of selecting suitable containers, and then builds a submodular maximization model to address this problem by selecting containers with

more distinct referenced chunks. Moveover, this paper further leverages the grouped form, i.e., GSMR, to reduce the fragmented

chunks caused by the accumulated differences among backup versions. We implement SMR in the deduplication system, which is

evaluated via three real-world datasets. Experimental results demonstrate that SMR is superior to the state-of-the-art work in terms of

the restore performance as well as deduplication ratio, and GSMR further improves the restore performance. We have released the

source code of SMR in Github for public use.

Index Terms—Data deduplication, restore performance, rewriting scheme
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1 INTRODUCTION

DATA deduplication has been widely used in backup sys-
tems to save storage space [1], [2]. It divides incoming

data stream into small and variable pieces, called chunks [3],
and identifies each chunk by its small-size signature, called
fingerprint, via hash functions, such as SHA-1, SHA-256 and
MD5 [3], [4]. A fingerprint index maps fingerprints of the
stored chunks to their physical addresses [5], [6]. These
chunks are stored into several large fixed-size storage units
called containers, to preserve the spatial locality of the
backup data stream [2], [5], [7], [8], [9]. A container is the basic
unit of reads and writes. Based on the redundancy of incom-
ing chunks, a data deduplication system needs to carry
out different operations. Specifically, duplicate chunks are
replaced with the references to existing identical copies
stored in old containers, and unique chunks are written into
new containers. Each backup has a recipe to record the refer-
ence to the container of each backup chunk. In a restore
phase, the restore algorithm scans down the recipe of the
backup to determine which containers need to be retrieved
fromdisks to the restore cache, which contains the prefetched
containers, to restore the target chunks of the backup stream.

Although data deduplication is space-efficient, logically
consecutive chunks have to be physically scattered in differ-
ent containers, thus causing chunk fragmentation [5], [7],
[10], [11], [12]. The fragmentation severely degrades the
restore performance, while the infrequent restore is very
important and becomes the main concern from users [13].
First, original sequential disk accesses of reading logically
consecutive chunks become many random ones, while ran-
dom accesses perform poorly in disks due to the penalty of
disk seeks [7], [14]. Second, due to the fragmentation, some
containers, containing a few referenced chunks (defined as
the chunks referenced by the backup), are retrieved to restore
the backup. The remaining unreferenced chunks in the
retrieved containers are not accessed by the data stream, thus
causing the waste of limited disk bandwidth and decreasing
restore speed.

To address the fragmentation problem, several schemes
propose rewriting algorithms to rewrite fragmentedduplicate
chunks during the backup, such as Capping [7] and NED [8].
They aim to obtain a suitable trade-off between deduplication
efficiency and restore performance via selective deduplication
upon containerswithmore referenced chunks.

We observe that more versions of the backup data are
backed up, andmore duplicate chunks are rewritten into new
containers, as described in Section 2. Thus, multiple identical
copies of these chunks are stored in different containers, caus-
ing redundancy among containers. However, the containers
selected by existing schemes [7], [8] are suboptimal due to
overlooking the redundancy among the containers. Hence,
some containers with many redundant chunks, which are not
referenced by the backup, are selected, thus wasting some
disk bandwidth and slowing down the restore speed.
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To address this problem, we propose a submodular max-
imization rewriting scheme (SMR) to efficiently select con-
tainers for deduplication, and judiciously rewrite duplicate
fragmented chunks. SMR aims to select a limited number
of containers which offer more distinct referenced chunks
for the backup, thus reducing the number of redundant
or unreferenced chunks in the selected containers, to gain
a better trade-off between deduplication efficiency and
restore performance. If more distinct referenced chunks are
offered for the current backup stream, more chunks in the
backup stream can be deduplicated, thus saving storage
space. Since less chunks are rewritten into new containers,
SMR decreases the number of containers retrieved for
restore. In addition, SMR also reduces the disk accesses of
redundant and unreferenced chunks fetched in the restore
phase. Hence, SMR achieves better restore performance as
well as deduplication ratio.

Though consecutive backup versions are similar under
most situations, we observe that the differences among ver-
sions are accumulated with the increasing number of ver-
sions, as described in Section 4. As a result, there are more
and more fragmented chunks which jeopardize the restore
performance. Therefore, we further propose a grouped
deduplication scheme of SMR to improve the restore perfor-
mance further. We divide the sequential backup versions
into groups, and each version only deduplicates chunks
with the versions in its own group. Hence, the differences
among versions are limited to each group, reducing the
number of fragmented chunks of backup versions.

In summary, the paper makes the following
contributions.

� We observe that due to overlooking the redundancy
among containers, existing solutions [7], [8] poten-
tially choose suboptimal containers with many
redundant chunks, which decreases the restore per-
formance. This is an important problem for improv-
ing entire system performance.

� We propose a submodular maximization rewriting
scheme, i.e., SMR, to select containers with more dis-
tinct referenced chunks for the backup, reducing the
waste of disk accesses caused by redundant and
unreferenced chunks in the restore phase. It can
deduplicate more chunks and rewrite less chunks,
and less containers are retrieved during the restore,
gaining a better trade-off between deduplication effi-
ciency and restore performance.

� We propose a grouped deduplication scheme to opti-
mize SMR, i.e., GSMR, which mitigates the fragmen-
tation caused by the accumulated differences among
versions. GSMR improves the restore performance
further compared with SMR, without significantly
decreasing the deduplication ratio.

� We implement our scheme in the deduplication sys-
tem and evaluate the performance via three real-world
backup datasets. Compared with the state-of-the-art
schemes [7], [8], experimental results demonstrate
that our scheme obtains higher deduplication ratio as
well as restore performance. We have released the
source code of SMR for public use at https://github.
com/courageJ/SMR.

The rest of this paper is organized as follows. In Section 2,
we describe the background and motivation. We present the
design of SMR and grouped deduplication respectively in
Sections 3 and 4. Section 5 presents the evaluation method-
ology and results. Related work is discussed in Section 6.
We conclude our paper in Section 7.

2 BACKGROUND AND MOTIVATION

2.1 Chunk Fragmentation

Data deduplication saves storage capacity by storing one copy
of the duplicated data. But the logically contiguous chunks of
each backup are scattered all over different containers, called
chunk fragmentation [5], [7], [10], [11], [12]. Thus the restore
of each backup needs many random I/Os to the containers,
which perform poorly in disks. Hence, chunk fragmentation
significantly decreases the restore performance.

We simulate the baseline deduplication without rewriting
on three real-world datasets, including GCC [15], Linux [16]
and FSLhomes [17] (detailed in Section 5) to explore the
degree of chunk fragmentation and the restore performance.
The chunk fragmentation level (CFL) [11], [12] is a quantita-
tive metric to measure the level of chunk fragmentation per
data stream, which is defined as a ratio of the optimal num-
ber of containers without any deduplication scheme with
respect to the number of containers after deduplication to
store the backup data stream. The CFL ranges from 0 to 1.
The smaller CFL indicates that the physical distribution of
the data stream is more scattered, resulting in lower restore
speed. The speed factor [7] (detailed in Section 5) is a metric
to evaluate the restore performance. The higher speed factor
indicates the better restore performance. As shown in Fig. 1,
the fragmentation level is mainly in a downward trend, indi-
cating that the physical dispersion becomes more severe.
As shown in Fig. 2, the speed factor declines severely with
the increasing number of backup version, indicating the
decrease of restore performance when more versions
are backed up. A few exceptions in the Linux datasets are the
major revision updates, which have more new data stored
consecutively. When more backups arrive, more shared
chunks appear, which exacerbates the backup fragmentation
and decreases the restore performance. Hence, how to miti-
gate the large slowdown of restore performance over time
caused by the increasing degree of chunk fragmentation is
an important problem to be concerned.

2.2 The Selective Container Deduplication Schemes

In order to address the fragmentation problem and improve
restore performance, some schemes about selective container

Fig. 1. The chunk fragmentation over time.
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deduplication have been proposed, e.g., Capping [7] and
NED [8]. They define the fraction of chunks referenced by
the backup in a container as the container’s utilization and
try to select containers with higher utilization for a backup to
deduplicate. These schemes rewrite the duplicate chunks
which refer to lower-utilization containers, to alleviate the
waste of disk bandwidth caused by the unreferenced chunks
in these containers in the restore phase. Hence, the restore
performance has been improved with the cost of decreasing
storage efficiency.

Specifically, Capping splits the backup data stream into
fixed-length segments, and uses a buffer to temporarily
store them. The fingerprint index is further queried to con-
jecture which containers can be referenced by the chunks in
the current segment. In fact, this is a trade-off between
deduplication ratio and restore performance by setting the
amount limit CAP T of selected containers for deduplica-
tion. If the amount N of the containers which contain refer-
enced chunks for the current segment is more than CAP T ,
the top CAP T containers are selected and used in dedupli-
cation according to their utilization. The chunks of the seg-
ment are deduplicated if having identical copies in the
selected containers. Otherwise, they are rewritten into new
containers. Capping improves restore performance by limit-
ing the amount of containers that a segment can refer to,
and selects the containers with higher utilization. Moreover,
NED computes the ratio of the sum size of referenced
chunks to that of the stored chunks in each container for the
current backup segment. If the ratio of a container is lower
than a threshold NED T , the chunks in the segment that
can refer to this container are regarded as fragmented
chunks, which are further rewritten into new containers.
NED aims to select some containers with utilization over
the threshold for deduplication, which improves restore
performance and mitigates data fragmentation.

2.3 Problem Statement

Multiple rewriting schemes, e.g., Capping [7] and NED [8],
have been proposed to rewrite fragmented duplicate
chunks to improve restore performance. However, with the
increase of the number of backup versions, more and more
duplicate chunks are rewritten into new containers. In con-
sequence, many identical chunks are stored in different con-
tainers, thus increasing the redundancy among containers.
Due to overlooking the redundancy among containers,
existing schemes [7], [8] need to count some redundant
chunks, which are not referenced by the backup, in

computing the utilization of containers. Hence, some subop-
timal containers are selected for the backup, which exacer-
bates disk accesses and slows down the restore speed.

Specifically, there exist multiple identical chunks among
the selected containers referenced by the backup. One of
these identical chunks can be referenced to deduplicate and
restore all chunks with identical context of the backup. Due
to playing the same function, other redundant chunks are
not needed to be referenced by the backup. These redun-
dant chunks in the selected containers hence fail to be
regarded as referenced chunks in computing the utilization
for these selected containers that are mistakenly considered
to achieve higher utilization.

We take Capping [7] as an example to show the effects of
the redundancy among containers on the restore perfor-
mance. As shown in Fig. 3, three data streams with thirteen
chunks are backed up and the amount of the selected con-
tainers in Capping, CAP T , is set as 2. The number of

Fig. 2. The speed factor over time.

Fig. 3. An example of three consecutive backups with the Capping rewrit-
ing scheme.
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chunks stored in each container is fixed as 5. The chunks in
the first stream are stored in containers I, II, and III. When
the second stream arrives, the utilizations are computed for
each container: I is 5, II is 2 and III is 3. The containers I and
III are the top 2 selected containers. Two chunks F and G
referring to the container II and the remaining three unique
chunks are written into the new container IV. Moreover,
when the third stream arrives, the utilizations for each con-
tainer are also computed: I is 3, II is 5, III is 0 and IV is 4.
Thus top 2 selected containers are II and IV. 7 chunks are
deduplicated. 6 remaining chunks which do not refer to the
two containers are stored in new containers. As shown in
the third stream backup, both containers II and IV have
chunks F and G. Thus, in a restore phase, fetching the con-
tainer IV only restores the chunks O and P, since the chunks
F and G have been already restored by the container II. This
scheme deduplicates less data due to selecting the container
IV to deduplicate the chunks F and G that have been dedu-
plicated by the container II. Thus, the chunks F and G in the
container IV are considered to be referenced chunks when
the Capping scheme counts the utilization for the container
IV to select container IV, but the chunks F and G actually
are not, wasting disk accesses.

As shown in the example above, more backups lead to
more rewritten chunks in the new containers. Hence, there are
more identical chunks stored in different containers, increas-
ing the redundancy among containers. Existing schemes [7],
[8] determine a chunk as the referenced chunk as long as it can
be referenced by the backup. But considering all chunks in the
selected containers, some chunks are redundant to be refer-
enced, leading to extra disk accesses in a restore phase.

2.4 Observations and Motivations

2.4.1 The Redundancy Among Containers

More and more chunks are rewritten into new containers in
a backup for better restore performance, and thus multiple

copies are stored in different containers for identical
chunks, increasing the redundancy among containers. We
explore the redundancy among containers in three real-
world datasets, including GCC [15], Linux [16] and
FSLhomes [17] (detailed in Section 5). We use Capping [7]
as the example of the rewriting algorithm to back the conse-
cutive versions of each dataset up in two experiments. One
is to back the datasets up under the constant Capping level,
i.e., CAP T . The other is to back up under different CAP T
values. The default size of segment in Capping is 20 MB,
which is recommended in the Capping paper [7]. The con-
stant Capping level in the first experiment is set as 20 con-
tainers per 20 MB segment.

We classify the stored chunks into two categories: unique
chunks (i.e., chunks only stored in one container) and
redundant chunks (i.e., chunks with multiple copies stored
in different containers). We count the amount of the two
kinds of chunks respectively.

As shown in Fig. 4, the amount of redundant chunks
becomes far more than that of unique chunks when the
backup version number grows. The reason is that original
unique chunks become chunks with multiple copies since
incoming identical chunks are rewritten into new contain-
ers. More and more containers have identical chunks. As
shown in Fig. 5, CAP T values vary from 5 to 40 per seg-
ment. Smaller CAP T indicates that less containers are
selected for segments, achieving better restore performance,
and more chunks are rewritten into new containers, which
results in more redundant chunks. As shown in the two
experiments, more and more chunks are rewritten into new
containers to reduce data fragmentation, however increas-
ing the redundancy among containers.

2.4.2 Motivations

Although existing selective container deduplication schemes
improve restore performance by limiting the amount of the

Fig. 4. The redundancy among containers in consecutive versions backups with the Capping rewriting scheme.

Fig. 5. The observations of redundancy among containers in various CAP_T levels.
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selected containers with less referenced chunks for dedupli-
cation, the redundancy among containers results in multiple
identical chunks to be selected for deduplication and fetched
to restore the same chunks, wasting disk accesses. In essence,
the wasted disk accesses in the restore phase are caused by
selecting different containers with redundant chunks to
deduplicate. Thus, when fetching containers to restore data
stream, both unreferenced and redundant chunks in contain-
ers cause the waste of disk bandwidth and decrease the
restore performance.

We aim to improve the restore performance by selecting
a subset of containers with more distinct referenced chunks
for deduplication under the limits of selected containers to
reduce the number of unreferenced and redundant chunks
in the selected containers. For example, we perform our
selection strategy on the three backup streams as shown in
Fig. 3. The amount of the selected containers is also set as 2,
which is the same as Capping level, i.e, CAP T in Fig. 3.
The backup processes and containers distributions after the
first two stream backup are the same as those in Fig. 3. For
the third data stream, when selecting 2 containers to dedu-
plicate, we first count the amount of distinct referenced
chunks for every 2 containers, as shown in Table 1. The
number of distinct referenced chunks in the subset, consist-
ing of the containers I and II, is more than any other subsets.
Selecting the containers I and II can deduplicate 8 chunks
and write 5 chunks. The distributions of containers after the
third backup stream are shown in Fig. 6.

Compared with Capping in Fig. 3, we deduplicate 8
chunks A, B, C, F, G, H, I and J while Capping deduplicates
7 chunks F, G, H, I, J, O and P. We rewrite 2 duplicate frag-
mented chunks O and P into new containers while Capping
rewrites 3 duplicate fragmented chunks A, B and C. Hence,
we deduplicate more chunks and rewrite less chunks, sav-
ing more storage space. In the restore phase, we only fetch
three containers I, II, V to restore the third data stream while
Capping needs to retrieve four containers II, IV, V, VI. The
reason is that we select two containers I and II, which have
the largest number of distinct referenced chunks and no
redundant chunks. Capping selects containers II and IV,
which have higher utilizations and however contain two
redundant chunks. The redundancy causes the actual num-
ber of referenced chunks in container IV to be much smaller
than that in container I. Capping mistakenly considers the
utilization of container IV to be the one of top 2 containers,
which is selected for deduplication. Therefore, selecting
containers with more distinct referenced chunks can dedu-
plicate more chunks, rewrite less chunks and reduce the
number of redundant and unreferenced chunks in the

selected containers, achieving higher deduplication ratio
and also improving restore performance.

3 THE DESIGN OF SMR

3.1 An Architectural Overview

To reduce data fragmentation, our proposed Submodular
Maximization Rewriting Scheme (SMR) selectively rewrites
some fragmented duplicate chunks into new containers,
and deduplicates the remaining duplicate chunks. SMR
aims to trade the slight decrease of deduplication ratio for
the high restore performance via efficiently selecting a lim-
ited number of old containers with more distinct referenced
chunks for deduplication by a submodular maximization
model. Specifically, in an old container, if there are many
unreferenced and redundant chunks which are not needed
to be referenced by the backup, there are few referenced
chunks in the container. Thus, SMR rewrites the few refer-
enced chunks of the old containers to reduce disk accesses
caused by the unreferenced and redundant chunks in the
restore phase. In a backup phase, there are many old con-
tainers sharing the duplicate chunks with the backup data
stream. How to select the containers to perform deduplica-
tion is a trade-off between the restore performance and the
deduplication ratio. Hence, SMR selects a suitable subset of
containers to obtain better restore performance while ensur-
ing the high deduplication ratio.

Fig. 7 illustrates the architecture of SMR in a deduplication
system. The grouping operation is optional, which is a part of
grouped deduplication and detailed described in Section 4.
In the main memory, the system splits the input data streams
into chunks and uses hash functions to identify them, then
the data stream is divided into segments which consist of
some continuous chunks. For each segment, after redun-
dancy identification, in order to gain a suitable trade-off
between deduplication ratio and restore performance, SMR
determines which chunks are deduplicated or rewritten
according to the redundancy information of segments.
Finally, these rewritten and unique chunks are stored into the
container pool. Meanwhile, the index and recipe are updated
according to the fingerprints and addresses of these chunks.

Specifically, before a backup, the SMR level, i.e., T old
containers selected for the deduplication of every S MB seg-
ment, is configured and the backup stream is split into
chunks, which are further grouped into segments. For each
segment, we first read each chunk of the segment, and then
determine which chunks have identical copies stored in

TABLE 1
The Amount of Distinct Referenced Chunks

for Every 2 Containers

Container ID Distinct Referenced Chunks Chunks Amount

I, II A B C F G H I J 8
I, III A B C 3
I, IV A B C F G O P 7
II, III F G H I J 5
II, IV F G H I J O P 7
III, IV F G O P 4

Fig. 6. The distributions of containers after the third backup.
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containers and their located container IDs by inquiring the
fingerprint index. In detail, the complete fingerprint index is
stored on disks while the hot part is stored in memory to
accelerate the indexing of fingerprints. Afterwards, we select
T old containers with the largest number of distinct refer-
enced chunks to perform deduplication. Finally, for each
chunk in the segment, if finding an identical copy in the
selected containers, the chunk is deduplicated. Otherwise, it
is treated as new chunks to be stored in new containers.

3.2 The Submodular Maximization Rewriting
Scheme

In a restore phase, the containers containing the target
chunks of the restored data stream are read from disks to
the memory. One way to improve restore performance is to
reduce the number of the retrieved containers.

In order to achieve this goal, SMR limits the number of
old containers that referenced by the backup and reduces
the amount of new containers storing the rewritten and
unique chunks. Limiting the number of old containers
means selecting a subset of old containers for the backup in
deduplication. Reducing the amount of new containers
means reducing the number of rewritten chunks, which
depends on the old containers selection. Considering that
the unreferenced and redundant chunks in old containers
waste disk accesses in a restore phase, if a set of old contain-
ers with more distinct referenced chunks are selected for
the backup to perform deduplication, we are able to dedu-
plicate more chunks and reduce the number of the chunks
to be rewritten into new containers. Thus, the number of the
retrieved containers is reduced while alleviating the waste
of disk accesses caused by unreferenced and redundant
chunks, improving the restore performance.

We formulate the problem of container selection as a sub-
set selection problem.

Definition 1 (Subset Selection Problem). Given a set of old
containers to be selected V ¼ ðC1; C2; . . . ; C Vj jÞ and the
amount of selected containers T , we aim to find a container sub-
set S � V , Sj j � T , which can offer the largest number of dis-
tinct referenced chunks for the backup to perform deduplication
under the constraints of the container amount.

Here, we set the SMR level metric as the maximum
amount of selected containers T to limit the amount of old
containers to be selected, which constrains the number of
containers that need to be read in the restore phase to accel-
erate restore speed.

The number of deduplicated chunks depends on the num-
ber of distinct referenced chunks in the selected containers.
Hence, the container subsetwith the largest number of distinct
referenced chunks can deduplicate the maximum number of
chunks, and new containers ideally store the minimum num-
ber of rewritten chunks,whichdecreases the storage consump-
tion. Moreover, we determine which subset of containers can
be selected, rather than determining whether to be selected for
each container, thus preventing redundant chunks from being
counted into the number of the referenced chunks.

To address the problem of container subset selection, we
build a submodular maximization model [18]. We first
design a scoring function F : 2V ! R to indicate the amount
of distinct referenced chunks in a subset. Thus the subsets
offering more distinct referenced chunks are mapped to
higher scores and the subsets offering less distinct refer-
enced chunks are mapped to lower scores. The subset selec-
tion can be performed by the following computation:

S� 2 argmax
S�V

F ðSÞ s:t: Sj j � T:

In order to describe the distinct referenced chunks in con-
tainers, the scoring function F is designed as:

F ðSÞ ¼
[
Ci2S

wðCiÞ
�����

�����:
Specifically, wðCiÞ represents all referenced chunks in the
container Ci.

S
denotes the union of a collection of sets,

indicating the set of all distinct elements in the collection.
The �j j denotes the number of all elements in the set. Hence,
F(S) denotes the number of all distinct referenced chunks
that all containers Ci 2 S can offer.

In general, for arbitrary set functions, computing S� is
intractable [19]. Moreover, in the subset selection problem,

there are N
M

� �
possible cases of selecting M containers from

N containers, which is exponentially large for any reason-
able M and N [20]. Hence, it is inefficient to compute all
possible cases. However, the maximization for any mono-
tone submodular functions under some constraints can be
efficiently solved by the greedy algorithm in a constant-
factor mathematical quality guarantee [21]. The scoring
function F is exactly a monotone submodular function,
which is proved below. Thus, we can address the subset
selection problem efficiently via the greedy algorithm [18].

We first introduce the definition and property of sub-
modular functions [22].

Fig. 7. The SMR Architecture.
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Definition 2 (Submodular). Given a finite set, a set function
f : 2V ! R that maps subset S � V of a finite ground set V to
real numbers, is submodular if it satisfies: for any S � T � V
and a 2 V n S,

fðS [ af gÞ � fðSÞ � fðT [ af gÞ � fðT ÞÞ:

This states that the incremental benefit of adding an ele-
ment to a smaller set is not less than that of adding an ele-
ment to a larger set.

Definition 3 (Monotone). A set function f : 2V ! R is
monotone if for every S � T � V , fðSÞ � fðT Þ.
Based on the definition and property, we prove the scor-

ing function F is a monotone submodular function. The
operation \ in the formulation, e.g., A \B denotes the inter-
section of two sets A and B, indicating a set that contains all
elements of sets A and B.

Statement 1. The scoring function F ðSÞ ¼ S
Ci2SwðCiÞÞ

��� ��� is
submodular.

Proof 1. Given any set S � T � V and element Ca 2 V n S,
we have

F ðS [ Caf gÞ � F ðSÞ ¼ wðCaÞj j � wðCaÞ \
[
Ci2S

wðCiÞ
 !�����

�����;
indicating the number of chunks in container Ca but not
in any containers Ci 2 S, and

F ðT [ Caf gÞ � F ðT Þ ¼ wðCaÞj j � wðCaÞ \
[
Ci2T

wðCiÞ
 !�����

�����;
indicating the number of chunks in container Ca but not
in any containers Ci 2 T . Thus we have

F ðS [ Caf gÞ � F ðSÞ � ðF ðT [ Caf gÞ � F ðT ÞÞ

¼ wðCaÞ \
[
Ci2T

wðCiÞ
 !�����

������ wðCaÞ \
[
Ci2S

wðCiÞ
 !�����

�����
¼ wðCaÞ \

[
Ci2ðTnSÞ

wðCiÞ
0
@

1
A

������
������

� 0:

This indicates the number of chunks in Ca, which are not
in any containers Ci 2 T n S. The left expression is not
less than 0 in any case. Specially, when the chunk inter-
section of containers Ca and Ci 2 T n S is empty, the left
expression is equal to 0. Thus,

F ðS [ Caf gÞ � F ðSÞ � F ðT [ Caf gÞ � F ðT Þ;
indicating F is submodular according to Definition 2.
That means when adding the new container Ca to the
smaller set S, the incremental number of distinct refer-
enced chunks is not smaller than that of adding Ca to the
larger set T . tu

Statement 2. The scoring function F ðSÞ ¼ S
Ci2SwðCiÞÞ

��� ��� is
monotone.

Proof 2. Given any set S � T � V , we have

F ðT Þ � F ðSÞ ¼
[
Ci2T

wðCiÞ
�����

������
[
Ci2S

wðCiÞ
�����

�����
¼

[
Ci2TnS

wðCiÞ � wðCiÞ \ ð
[
Cj2S

wðCjÞÞ
0
@

1
A

������
������

� 0: tu
F ðT Þ is always not smaller than F ðSÞ, indicating F is

monotone according to Definition 3. That means the number
of distinct referenced chunks in the larger set T is not smaller
than that in the smaller set S. As shown above, the scoring
functionF is proved to be submodular andmonotone.

Algorithm 1. The Greedy Selection Algorithm

Input: A set of containers to be selected: V . Submodular
monotone function: F ð�Þ. All chunks in each container: wð�Þ.
The amount of containers selected: T.

Output: A set of containers S � V , where jSj � T .
1: S0  ? ; i 0
2: while Sij j � T do
3: Choose ci 2 argmaxci2V nSi ðF ðSi [ cif gÞ � F ðSiÞÞ
4: if ðF ðSi [ cif gÞ � F ðSiÞ ¼¼ 0Þ then
5: Break
6: end if
7: Siþ1  Si [ Cif g
8: i iþ 1
9: end while
10: return Si

We design a greedy algorithm to select the subset of con-
tainers with the largest number of distinct referenced chunks
effectively. As shown in Algorithm 1, the algorithm sequen-
tially finds a container ci in the remaining set V n Si for each
iteration. Moreover, ci has the maximum quantity in offering
the chunks which are different from chunks in Si. Adding ci
to Si offers more distinct referenced chunks for the segment
than other containers. When adding the containers from the
set V n Si to Si, if the increased number of distinct referenced
chunks is not larger than 0, the iteration will stop, preventing
containers without any referenced chunks from being
selected and reducing disk accesses. When selecting b con-
tainers from a containers, the number of containers that the
greedy algorithm needs to access isNa;b.

Na;b ¼
Xa

i¼a�bþ1
¼ 2 � a� bþ 1ð Þ � b=2:

The number of containers that traversing all possible cases
needs to access is a

b

� �
, which is much larger thanNa;b. Hence,

the greedy algorithm can figure out the selection problem
efficiently.

4 THE GROUPED DEDUPLICATION SCHEME

4.1 The Observation of Differences among Backup
Versions

To explore the variation of the difference degree among
backup versions,we calculate the Jaccard Similarity Index [23]
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for backup versions of three real-world datasets, including
GCC [15], Linux [16] and FSLhomes [17] (detailed in Sec-
tion 5). For each version, we compare it with the first backup
version and its previous version to compute the Jaccard Simi-
larity Index. As shown in Fig. 8, the similarity index between
each version and its previous version is more than 0.8 except
for some major version upgrades. However, the similarity
between each version and the first version mainly decreases
with the increasing of the version number. The similarity
between two backup versions is time-sensitive according to
its backup sequence. The differences may be slight between
two consecutive versions, while those among versions are
accumulated when the number of versions increases. As
shown in Fig. 1, the change regulation of the fragmentation
level basically keeps pace with the Jaccard Similarity Index
between each version and the first version. The accumulated
differences result in the increasing number of the fragmented
chunks, which hurt the restore performance. Specifically, the
differences among versions allow some chunks which are ref-
erenced by older versions to become unreferenced for newer
versions, and the referenced chunks to become fragmented
chunks. Taking Fig. 3 as an example, the chunks F, G, H, I, J
are referenced by the first stream, while only chunks F and G
are still referenced by the third stream. The chunks F and G,
which are less than a half in the container II, become the frag-
mented chunks of the third backup stream. The increasing
number of fragmented chunks has negative impact on restore
performance. Hence, when larger differences appear, the lat-
ter version can choose not to share chunks with former ver-
sions at the cost of little deduplication ratio, which decreases
fragmented chunks and significantly improves the restore
performance of the newer ones.

4.2 The GSMR Design

Based on the observation, we propose a grouped deduplica-
tion scheme to further reduce the fragmented chunks. The
main idea is to divide the consecutive versions into groups
without intersections with each other. Each version only
needs to share chunks with other versions in its group for
deduplication. Hence, without sharing chunks with former
backup versions, backup versions have less fragmented
chunks, and the restore performance is improved. In detail,
several consecutive versions are grouped as described in
Algorithm 2. The amount of version in each group depends
on the Jaccard Similarity Index between two consecutive
versions. When backing up Versioni, if it is not the first ver-
sion of the group groupj and the Jaccard Similarity Index
between it and its previous version is less than the assigned

threshold T , i.e., JVersioni;Versioni�1 < T , groupj is stopped
and the system will first build a new group groupjþ1 and
subindexjþ1, then it puts Versioni into the new groupjþ1 and
query subindexjþ1 to deduplicate the duplicate chunks in
Versioni. Otherwise, the system will put Versioni into
groupj and queries subindexj for the deduplication of
Versioni. Hence, each group contains versions which are
very similar with its previous version. For each group, the
system builds a new subindex for the group for deduplica-
tion. Each version in this group identifies the redundancy of
its chunks only based on the subindexj and deduplicates
duplicate chunks. Then unique chunks are stored into new
containers and the subindexj is updated accordingly, which
is used by the deduplication of the following backup ver-
sion in this group. Each group has its own subindex for
deduplication, and the versions from different groups are
not sharing chunks, thus reducing the amount of frag-
mented chunks and improving the restore performance. We
synergize SMR with the grouped deduplication scheme,
i.e., GSMR, to improve the restore performance further. We
only need to replace the conventional deduplication opera-
tion with SMR in Algorithm 2.

Algorithm 2. The Grouped Dedupliation Algorithm

Input: A set of versions to be backed up: version1, ...,versionS .
Versions overall amount: S.
Jaccard similarity index threshold for two consecutive
versions: T .
Jaccard similarity index threshold between two consecutive
versions: JVersioni;Versioniþ1

1: i 1; j 0; FirstVersion 1
2: while i � S do
3: if FirstVersion ¼ 1 then
4: j jþ 1
5: create subindexj for groupj
6: FirstVersion 0
7: else if JVersioni;Versioni�1 < T then
8: FirstVersion 1
9: Continue
10: end if
11: query subindexj to identify the redundancy of each

chunks of versioni, if the chunk is duplicate,
deduplicate it.

12: write unique chunks of versioni into new containers
13: update subindexj

14: i iþ 1
15: end while

Fig. 8. The similarity between two backup versions.

126 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 1, JANUARY 2019



5 PERFORMANCE EVALUATION

5.1 Experiment Setup

We configure our experimental environment by extending a
real-world open-source deduplication system, i.e., Des-
tor [24],which has beenused inmultiple research schemes [5],
[25], [26]. To examine the restore performance of SMR, we
compare it with two state-of-the-art selective rewriting
schemes that leverage containers in deduplication systems,
i.e., Capping [7] andNED [8], described in Section 2.

We implement our scheme in Destor [24] on the CentOS
operating system running on a 4-core Intel E5620 2.40 GHz
system with 24 GB memory and 1 TB hard disk. As shown
in Fig. 7, the workflow of deduplication consists of several
phases, such as chunking, hashing, indexing and rewriting.
In the implementation of deduplication system, to fully use
the sources of multi-core system, we pipeline the four
phases mentioned above to speed up the deduplication pro-
cess by using pthreads. Due to the lack of source code of
Capping, we faithfully implement its idea and main compo-
nents described in its paper [7], which is also released in
our public source code.

Three real-world datasets, including GCC, Linux and
FSLhomes, are used for evaluation, which have been evalu-
ated for deduplication in the storage community [5], [27],
[28], [29]. Their characteristics are listed in Table 2. Specifi-
cally, Linux [16] consists of 96 consecutive versions of
unpacked Linux kernel sources from linux-4.0 to linux-4.7.
Moreover, GCC [15] consists of the source code of the GNU
Complier Collection. There are 89 consecutive versions
from gcc-2.95 to gcc-6.1.0. The total size of the dataset is
about 56 GB. FSLhomes [17] dataset consists of snapshots of
the home directories from students. We collect the data
from several students’ backups over 4 months in year 2014,
which consists of 86 versions with the total size of 440 GB.

In a deduplication system, each dataset is divided into
variable-size chunks by using the content-based Rabin

chunking algorithm [30]. The SHA-1 hash function [4] is
used to generate the fingerprints of chunks. Since this paper
mainly focuses on improving the restore performance rather
than the fingerprint index access boosting, we simply store
the complete fingerprint index in memory in these experi-
ments. The restore cache stores the prefetched containers, in
which the LRU replacement algorithm is used [7].

We use the speed factor [7] as the metric of the restore
performance and the deduplication ratio and throughput to
examine the deduplication efficiency. Specifically, speed
factor [7] is to compute 1 divided by mean container read
per MB of data restored, which is widely used to evaluate
the restore performance [5], [7], [8]. Higher speed factor
means that less containers are needed for the restored data
per MB, thus indicating better restore performance. More-
over, deduplication ratio is the ratio of total size of the
removed duplicate chunks to that of all backed up chunks.
Furthermore, deduplication throughput is the amount of
backed up data per second. The higher deduplication
throughput indicates the faster backup speed.

5.2 The Configurations of Parameters

The segment size, cache size and container size are key
parameters in deduplication and restore phases. We con-
duct many experiments to assign suitable values to these
parameters, to achieve better performance of deduplication
system. When exploring the possible setting of one parame-
ter, other two parameters are set as their largest values in
these experiments. For example, in the experiments the
restore performance under various segment sizes, the cache
size is fixed as 60 containers and the container size is 4 MB.

5.2.1 The Segment Size

The chunks of a backup stream are grouped into fixed-
sized segments in the backup and restore phases. The seg-
ment size sets the scale of fragment identification. Fig. 9
shows the restore performance of SMR under various seg-
ment sizes. We observe that increasing the segment size
makes little difference to the speed factor. Larger segment
sizes fail to produce better results than smaller ones. For
example, the deduplication and restore performance when
the segment size is set as 20 MB are better than that of the
40 MB size. Hence, the segment size is set as 20 MB by
default, which is also the recommended setting in Capping
and NED.

TABLE 2
Workload Characteristics of the three Datasets

used in Performance Evaluation

Dataset name GCC Linux FSLhomes

Total size 56 GB 97 GB 440 GB
Amount of versions 89 96 86
Deduplication ratio 0.85 0.95 0.94
Average chunk size 6.17 KB 4.97 KB 8 KB

Fig. 9. The effect of segment sizes varies from 10MB to 40MB on deduplication and speed for selected SMR ratios (SMR level to the segment size).
SMR ratios are 5/10, 10/10, 15/10, 20/10, 25/10, 30/10 containers per MB.
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5.2.2 The Cache Size

Due to restoring the target data stream, the corresponding
containers are retrieved to restore cache from disks. We con-
sider the restore cache size for temporarily storing the con-
tainers in the restore phase. Fig. 10 shows the restore
performance of SMR under various cache sizes. Specifically,
SMR T stands for a SMR level of T containers for each seg-
ment. For example, SMR 10 indicates that for each segment,
10 containers are selected for deduplication. We observe
that if the cache size continuously increases, the restore
speed is faster. The reason is that larger cache sizes allow
more containers to be stored in the cache to restore chunks,
reducing the time overhead of fetching containers when the
cache misses occur. In addition, the increasing trend of
speed factor becomes slower. We argue that for a large pro-
portion of backup segments, about 20 containers are suffi-
cient to restore a segment. For most segments, when the
cache size is over 20, all containers can be fetched into cache
at once without replacement. But the speed factor still
increases since the total size of containers needed by a few
segments is larger than the cache size. Hence, we set the
default cache size as the total size of 30 containers with LRU
cache replacement scheme, which can cater to temporary
store needs of most cases.

5.2.3 The Container Size

Fig. 11 illustrates the restore speed and deduplication ratio
results of SMR when the configured container sizes are set
to be 1 MB, 2 MB, 4 MB respectively. We use various SMR
levels to conjecture the relationship between restore speed
and deduplication ratio. Specifically, more containers can
restore more chunks in one access, resulting in better restore
performance under the same deduplication ratio. Hence, the

default size of container is set as 4 MB, which is also well-
recognized in deduplication systems [2], [5], [7], [8], [24].

5.3 Experimental Results and Analysis

SMR aims to obtain a suitable trade-off between deduplica-
tion efficiency and restore performance. We compare our
scheme with two state-of-the-art schemes, i.e., Capping and
NED. The experimental settings of Capping and NED faith-
fully follow the recommended parameters of their publica-
tions [7], [8]. For example, the segment size is set as 20 MB.
We evaluate the overall speed factor, deduplication through-
put and deduplication ratio under different rewrite thresh-
olds in SMR and the two compared schemes. Specifically, for
each 20 MB segment, the Capping levels are 5, 10, 15, 20, 25,
30, 35, 40, 45, 50, 55 and 60. The corresponding NED thresh-
olds are 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0
per 20MB segment. Moreover, the related SMR levels are 5,
10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 per 20MB segment.
We repeated the experiments of each rewriting level or
threshold for three times, and the points in Figs. 12 and 13
are the average results for each rewriting level or threshold.

5.3.1 The Relationship between Deduplication Ratio

and Speed Factor

In general, higher speed factor results in lower deduplica-
tion ratio, since more duplicate fragmented chunks are
rewritten. As shown in Fig. 12, the speed factors of SMR are
larger than those of Capping and NED in the same dedupli-
cation ratios. Similarly, the deduplication ratios of SMR are
larger than those of Capping and NED in the same speed
factors. SMR can deduplicate more data while gaining bet-
ter restore performance. For example, Table 3 shows the
detailed amount of unreferenced chunks and redundant

Fig. 10. The effect of various cache sizes on the restore performance. The cache size is the total size of # containers. SMR T denotes a SMR level of
Tcontainers per 20MB segment.

Fig. 11. The effect of various container sizes on the restore performance and speed factor. The container sizes are set to 1MB, 2MB, and 4MB
respectively.
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chunks when three rewriting schemes achieve the same
deduplication ratio as 0.49. SMR reduces the amount of
redundant chunks by 20X and unreferenced chunks by 2X
when restoring the GCC dataset, and achieves higher speed
factor. Like our analysis in Section 2, our scheme improves
restore performance by reducing the amount of unrefer-
enced and redundant chunks fetched in the restore phase.
Thus, more chunks are deduplicated by more distinct refer-
enced chunks in the selected containers. Less chunks are
rewritten into new containers and less containers are
needed to be retrieved during the restore.

5.3.2 The Relationship between Deduplication

Throughput and Speed Factor

Fig. 13 presents the comparison among SMR, Capping and
NED in terms of deduplication throughput and speed factor.
When having the same restore performance, SMR can
achieve better deduplication throughput than other
approaches inmost cases. The reason iswhen selecting b con-
tainers from a containers, Capping and NED need to sort all
a containers by the number of referenced chunks in each con-
tainer. SMR only needs to visit Na;b ¼ 2 � a� bþ 1ð Þ � b=2
containers, while b is much smaller than a. The fluctuations
in the curves of GCC and Linux are influenced by flushing

container into disks. The FSLhomes dataset is a trace, which
consists of chunksmetadatawithout real chunks data stored,
and it is smoother than the other two curves.

5.3.3 The Effects of Pipelined Deduplication

In the multi-core system, the phases of deduplication are
pipelined to backup data faster. We take the implemented
SMR as an example to show the effects of pipelined dedu-
plication workflow. The SMR is implemented in serial
deduplication phases and pipelined deduplication phases.
The serial deduplication phases run in a single thread
sequentially. The pipelined deduplication phases use
pthreads for each phase, and run as pipeline. The results are
shown in Fig. 14. The pipeline-based SMR improves dedu-
plication throughput by 2.1X-3.2X compared with serial
implemented SMR, which leverages the multi-core architec-
ture to run phases in parallel.

5.4 The SMR Level Settings

In our scheme, the SMR level, defined as the number of old
containers selected for deduplication, i.e., is adjustable to
improve restore performance to meet the needs of different
cases. Fig. 15 shows the effects of various SMR-level settings
on the speed factor. The smaller SMR level results in the
higher speed factor. Because selecting less containers slows
down the accumulation speed of data fragmentation. Less
data fragmentation leads to better restore performance. Lower
SMR level setting can alleviate the waste of disk accesses
caused by unreferenced or redundant chunks in the retrieved
containers. The SMR level is the key element to tradeoff dedu-
plication efficiency and restore performance, and can be
altered according to the demands of restore performance.

5.5 The Comparisons between SMR and GSMR

We compare SMR and GSMR in terms of restore perfor-
mance. We set the same SMR level for both schemes, and

Fig. 12. Deduplication ratios versus speed factors for various thresholds in the Capping levels, SMR levels and NED thresholds in three datasets.

Fig. 13. Deduplication throughput versus speed factor as Capping levels, SMR levels and NED thresholds vary in three datasets.

TABLE 3
The Amount of Unreferenced Chunks and Redundant
Chunks in the three Rewriting Schemes and Detailed

Rewriting Levels or Thresholds

Rewriting Scheme Capping SMR NED

Speed factor 2.69714 3.03589 2.68622
Amount of unreferenced chunks 3884428 1782090 3234276
Amount of redundant chunks 4407953 194784 4632670

The dataset is GCC, and the deduplicatio ratio of the three rewriting schemes is
0.49.

WU ETAL.: IMPROVING RESTORE PERFORMANCE IN DEDUPLICATION SYSTEMS VIA A COST-EFFICIENT REWRITING SCHEME 129



Jaccard similarity index threshold assigned for two consecu-
tive versions is 0.8 according to the observations in Fig. 8. As
shown in Fig. 16, the restore performance of each version in
GSMR is not lower than SMR. On average, for GCC dataset,
GSMR increases 26 percent of restore performance with
only 1.5 percent decrease of deduplication ratio. For Linux
dataset, GSMR increases 20 percent of restore performance
and 0.2 percent of deduplication ratio. In FSLhomes dataset,
GSMR improves restore performance by 6 percent with
only 1 percent decrease of deduplication ratio. Though
GSMR would hurt the deduplication ratio of the first ver-
sion of each backup group, it increases the utilization of
some containers and provides better selection for SMR.
Hence, in some cases, both deduplication ratio and restore
performance increase. GSMR hence improves restore per-
formance without a significant decrease of deduplication
ratio compared with SMR.

6 RELATED WORK

In order to address the fragmentation problem, existing
schemesmainly propose rewriting-based solutions to rewrite
the duplicate fragmented chunks to mitigate the decrease of

the restore performance, which is actually a trade-off
between deduplication ratio and restore performance.

In the primary storage deduplication, iDedup [14] dedu-
plicates a sequence of chunks whose physical addresses are
also sequential exceeding a minimum length threshold.
POD [31] identifies capacity-insensitive and performance-
sensitive small duplicate writes and files to improve restore
performance. Unlike them, SMR aims to improve restore per-
formance in deduplication-based backup storage systems.

Nam et al. [11], [12] selectively deduplicate chunks with
the proposed quantitativemetric called chunk fragmentation
level (CFL) for backup workloads. This scheme becomes
inefficient to deduplicate chunks that are not included in the
sequence like former backups. The backup and restore units
in SMR are segments. Due to overlooking the order of chunks
in a segment, the chunks which are not in the sequence like
former backups can still be deduplicated.

Context-Based Rewriting(CBR) [32] rewrites fragmented
chunks by judging the difference between stream and disk
contexts. It limits the entire amount of deduplication loss to
a small value, which overlooks the unbounded fragmenta-
tion and decreases restore speeds. Capping [7] selectively
deduplicates chunks referring to top T containers ordered

Fig. 14. Deduplication throughput versus speed factor in serial and pipeline implemented SMR.

Fig. 15. The effects of various SMR levels on speed factor. SMR T denotes a SMR level of Tcontainers per 20MB segment.

Fig. 16. The speed factor comparisons of GSMR and SMR. The Jaccard similarity index threshold for two consecutive versions is 0.8.
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by the number of referenced chunks in containers, and
rewrites the remaining duplicate chunks. NED [8] selec-
tively rewrites fragmented chunks if the reference ratio of
the referred storage is lower than a threshold. In fact, CBR,
Capping and NED determine the fragmented chunks in the
write buffer using their fragmentation metric. CBR aims to
guarantee the deduplication ratio to exceed a limit with
the cost of deduplicating some fragmented chunks. SMR
mainly aims to gain better restore performance. Capping
and NED share the similar design goal with SMR, but they
overlook the redundancy among containers. Hence, redun-
dant chunks in different containers are counted in the utili-
zation of containers. But one chunk can deduplicate and
restore all identical chunks, and other redundant chunk
copies are unreferenced. SMR considers the redundancy
among containers and eliminates redundant copies counted
in the utilization for containers. As shown in Section 5.3,
compared with Capping and NED, SMR achieves better
restore performance and higher deduplication ratio. More-
over, HAR [5] exploits historical information of backup ver-
sions to identify sparse containers and rewrites chunks in
sparse containers to improve data locality. In fact, HAR is
orthogonal with SMR. HAR rewrites the chunks in the
sparse containers which can offer less referenced chunks for
multiple consecutive backups. SMR rewrites chunks in each
backup phase mainly to ensure high restore performance
for the current backup. Chunks which are not rewritten in
HAR are further examined by SMR.

7 CONCLUSION

The fragmentation problem significantly decreases the
restore performance in chunk-based deduplication sys-
tems. We observe that existing rewriting schemes address-
ing the fragmentation problem often result in significant
redundancy among containers, decreasing the deduplica-
tion ratio and causing redundant chunks to be read from
disks to restore the backup, which wastes limited disk
bandwidth and decreases the restore performance. The
main challenge to alleviate the fragmentation is how to
select suitable referenced containers to perform deduplica-
tion during the backup. In order to address this problem,
this paper proposes a submodular maximization rewriting
scheme (SMR). SMR formulates this challenge as an opti-
mal container selection problem, which is addressed by
building a submodular maximization model. The salient
feature of SMR is to reduce the number of redundant and
unreferenced chunks in selected containers, alleviating the
waste of disk accesses caused by unreferenced and redun-
dant chunks. Moreover, we observe that the differences
among versions are accumulated, which increase the num-
ber of fragmented chunks and decrease the restore perfor-
mance. We propose a grouped deduplication scheme to
synergize SMR by reducing the fragmented chunks, which
further improves the restore performance. Our experimen-
tal results based on three real-world datasets demonstrate
SMR outperforms the state-of-the-art work in terms of
both restore performance and deduplication ratio. More-
over, compared with SMR, GSMR can achieve higher
restore performance without significant decrease of dedu-
plication ratio.
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