1170

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.5, MAY 2019

Using High-Bandwidth Networks Efficiently
for Fast Graph Computation

Yongli Cheng™, Member, IEEE, Hong Jiang

Yu Hua

, Fellow, IEEE, Fang Wang, Member, IEEE,

, Senior Member, IEEE, Dan Feng, Member, IEEE,

Wenzhong Guo ™, Member, IEEE, and Yunxiang Wu

Abstract—Nowadays, high-bandwidth networks are more easily accessible than ever before. However, existing distributed graph-
processing frameworks, such as GPS, fail to efficiently utilize the additional bandwidth capacity in these networks for higher performance,
due to their inefficient computation and communication models, leading to very long waiting times experienced by users for the graph-
computing results. The root cause lies in the fact that the computation and communication models of these frameworks generate, send
and receive messages so slowly that only a small fraction of the available network bandwidth is utilized. In this paper, we propose a high-
performance distributed graph-processing framework, called BlitzG, to address this problem. This framework fully exploits the available
network bandwidth capacity for fast graph processing. Our approach aims at significant reduction in (i) the computation workload of

each vertex for fast message generation by using a new slimmed-down vertex-centric computation model and (ii) the average message
overhead for fast message delivery by designing a light-weight message-centric communication model. Evaluation on a 40Gbps
Ethernet, driven by real-world graph datasets, shows that BlitzG outperforms GPS by up to 27x with an average of 20.7x.

Index Terms—Graph computation, high-bandwidth networks, high performance, computation model, communication model

1 INTRODUCTION
D UE to the wide variety of real-world problems that
rely on processing large amounts of graph data
[1], [2], many vertex-centric distributed graph-processing
frameworks, including Pregel [3], GraphLab [4], Power-
Graph [5] and GPS [6], have been proposed to meet the com-
pute needs of a wide array of popular graph algorithms
in both academia and industry. These frameworks consider
a graph-computing job as a series of iterations. In each
iteration, vertex-associated work threads run in parallel
across compute nodes. Common in these frameworks are
a vertex-centric computation model and a vertex-target
communication model [3], [6], as shown in Fig. 1. In the
vertex-centric computation model, the work threads on each
compute node loop through their assigned vertices by using
a user-defined vertex-program(vertexi) function. Each vertex
program ingests the incoming messages (Gather stage),
updates its status (Apply stage) and then generates outgoing

o Y. Cheng and W. Guo are with the College of Mathematics and Computer
Science, FuZhou University, Fuzhou 350016, Fujian, China.

E-mail: {chengyongli, guowenzhong|@fzu.edu.cn.

e H. Jiang is with the Department of Computer Science & Engineering,
University of Texas at Arlington, Arlington, TX 76019.

E-mail: hong.jiang@uta.edu.

e F.Wang, Y. Hua, D. Feng, and Y. Wu are with the Wuhan National Lab for
Optoelectronics, School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan, Hubei 430074, China.
E-mail: {wangfang, csyhua, dfeng, yxwu J@hust.edu.cn.

Manuscript received 20 Nov. 2017; revised 3 Aug. 2018; accepted 6 Oct. 2018.
Date of publication 9 Oct. 2018; date of current version 10 Apr. 2019.
(Corresponding author: Yongli Cheng.)

Recommended for acceptance by Z. Lan.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2018.2875084

messages for its neighbors (Scatter stage). The incoming
messages were received from its neighboring vertices in the
previous iteration. In the vertex-target communication model,
the generated messages are first sent to the message buffers
where the message batches are then sent to the network.
The batched communication aims to reduce the average
communication overhead of the fine-grained messages [3],
[6]. At the receiver side, the message parser receives the mes-
sage batches and dispatches the messages in the message
batches to the message queues of the destination vertices
[3], [6]. Thus, the received messages can be identified by
their destination vertices. The received messages serve as
the inputs to their respective destination vertex programs in
the next iteration.

A salient communication feature of vertex-centric distrib-
uted graph-processing frameworks is that, for most graph
algorithms, the messages generated and delivered are usu-
ally small in size [7], [8]. Typically, a message carries a desti-
nation vertex name and a 4-byte integer or floating-point
number. However, within each iteration, there are an enor-
mously large number of messages used by vertices to inter-
act with one another. This feature makes message delivery
highly inefficient [9], [10], [11], [43] and severely underutil-
izes the network bandwidth capacity even when the message
buffering technique [3], [6] is used to amortize the average
per-message overhead.

However, nowadays, high-bandwidth networks, such
as 40 Gbps, even 100 Gbps networks, are easily accessible in
data centers [12]. The large gap between the slow communi-
cation in existing distributed graph-processing frameworks
and the easily accessible but severely underutilized high-
bandwidth network capacity motivates us to fully exploit

1045-9219 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5250-9437
https://orcid.org/0000-0002-5250-9437
https://orcid.org/0000-0002-5250-9437
https://orcid.org/0000-0002-5250-9437
https://orcid.org/0000-0002-5250-9437
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0002-1477-9751
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0003-4118-8823
https://orcid.org/0000-0003-4118-8823
https://orcid.org/0000-0003-4118-8823
https://orcid.org/0000-0003-4118-8823
https://orcid.org/0000-0003-4118-8823
https://orcid.org/0000-0003-3912-699X
https://orcid.org/0000-0003-3912-699X
https://orcid.org/0000-0003-3912-699X
https://orcid.org/0000-0003-3912-699X
https://orcid.org/0000-0003-3912-699X
mailto:
mailto:
mailto:

CHENG ETAL.: USING HIGH-BANDWIDTH NETWORKS EFFICIENTLY FOR FAST GRAPH COMPUTATION

Vertex-centric Computation
Source vertex program:
Gather, Apply, Scatter

Work 'I‘hn:gﬁ Work Thread
@_‘, Message Buffers ﬂ.;

Vertex-target Communication

|Destination Vertex

Message Queue

User Space - Message Batch Message Batch -
Linux Kemnel Linux Kernel
— Data frames Data frames

||
Network Interface Card (NIC) Hﬁ@—&" | Network Interface Card (NIC) I

Fig. 1. A pair of compute nodes in vertex-centric distributed graph-proc-
essing frameworks.

the high-bandwidth networks for high-performance graph
computation. In order to fully exploit the high-bandwidth
network capacity for fast graph computation, one must
address the following two key challenges.

The first is that the messages must be generated fast
enough. In order to generate a sufficient number of mes-
sages in a given time slot, one intuitive solution is to lever-
age expensive high-end servers with powerful processors to
speed up the execution of vertex programs on each compute
node [13], because the messages are generated by the vertex
programs. However, this solution may not be viable for
most distributed graph-processing frameworks that are
usually built on clusters of commodity computers with a
limited number of cores, for better scalability and lower
hardware costs [3], [4], [5], [6], [9]. Yet high scalability and
low hardware cost are important considerations for graph-
processing frameworks since a large number of compute
nodes are required to process a large graph [3], [9].

Instead of relying on more compute power, our proposed
solution is to reduce the computation workload of each
vertex. More specifically, since it is the vertex programs run
by the work threads that generate the messages, we propose
a slimmed-down vertex-centric computation model that
helps eliminate the time-consuming Gather stage of the ver-
tex program and thus significantly reduces the computation
workload of each vertex. Our experimental results, as shown
in Section 6, indicate that this method is very effective
because the runtime of each vertex-program is dominated
by the Gather and Scatter stages while the Apply stage entails
a single simple operation of updating the value of the
vertex [10].

The second challenge is that the average message time in
existing distributed graph-processing frameworks is very
long, which must be substantially shortened. That is, the
messages among the vertices must be delivered fast enough.
The average message time is defined as the time for sending
an average message from a source vertex to a remote desti-
nation vertex. The long average message time is primarily
consumed by the extra communication overheads of the
kernel overhead, multi-copy overhead, interrupt overhead
and the lock overhead [14], [15], [16], as discussed in Section
2.2. We address this challenge by proposing a light-weight
message-centric communication model that significantly
reduces the average message time by avoiding the four

171

extra communication overheads in existing distributed
graph-processing frameworks, as discussed in Section 4.
This paper makes the following three contributions.

1) A slimmed-down vertex-centric computation model that
significantly accelerates message generation by reduc-
ing the workload of each vertex.

2) A light-weight message-centric communication model that
significantly reduces average message delivery time.
Furthermore, this communication model significantly
reduces the memory footprint by avoiding intermedi-
ate messages. Thus, our approach can support larger
graphs or more complex graph algorithms with the
same memory capacity, leading to lower hardware
cost and better scalability.

3) The design and prototype implementation. Based on the
proposed computation and communication models,
we implement a high-performance distributed graph-
processing framework, called BlitzG that can achieve
the line-speed throughput of a 40 Gbps Ethernet, for
fast graph computation.

The rest of the paper is structured as follows. Back-
ground and motivation are presented in Section 2. The pro-
posed computation model is given in Section 3. Section 4
introduces the proposed communication model. Section 5
presents other key components of the BlitzG. Experimental
evaluation of the BlitzG prototype is presented in Section 6.
We discuss the related work in Section 7 and conclude the
paper in Section 8.

2 BACKGROUND AND MOTIVATION

In this section, we first present a brief introduction to the
vertex-centric computation model in existing distributed graph-
processing frameworks. This helps motivate us to propose a
new slimmed-down vertex-centric computation model, which can
provide faster speed of message generation, as discussed in
Section 3. We then introduce the vertex-target communication
model, in order to explore the high extra communication
overheads of existing distributed graph-processing frame-
works. The insights gained through these explorations help
motivate us to propose a light-weight message-centric commu-
nication model that significantly reduces average message
delivery time, as discussed in Section 4. We also introduce
Data Plane Development Kit(DPDK), a high-performance
user-space I/O framework. The key features of DPDK are
mostly relevant to the key designs of our light-weight message-
centric communication model, such as lockless design and reli-
able transmission.

2.1 Vertex-Centric Computation Model

We discuss the execution process of a typical compute node
in the vertex-centric distributed graph-processing frame-
works to help understand the vertex-centric computation
model. In this model, the graph to be processed is first parti-
tioned by a predefined scheme so that each subgraph is
loaded to a compute node that then assigns its vertices to a
limited number of work threads, each of which loops
through its assigned vertices by using a user-defined vertex-
program(vertex i). As shown in Fig. 2a, vertex-program(vertexi)
sequentially executes the following three stages for each

1172

Gather Apply Scatter

Input message queue of vertex i — Y
P Mgf in]|nut|i| }(f(, ¥) 1(

o= - - R EB—»ZZJ T J
(a) vertex-program{vertex 1).

Receiving message queues
3 5 MQ_recv[0)

—

- = =1 MO recvli]

= =] =1 MO _recv(v-1]
(b) vertex-target receiving/dispatching process.

Fig. 2. The workflow of the vertex-centric distributed graph-processing
framework in a typical compute node.

vertex i: Gather, Apply, and Scatter. In the Gather stage, the
value of each message in the input message queue MQ_input
[i] of vertex i is collected through a generalized sum:

Z = QmeMq_inputfijm-value (2.1)

The user defined sum @ operation is commutative and
associative, and can range from a numerical sum to the
union of the data on the incoming messages [4].

The resulting value X is used in the Apply stage to update
the value of the vertex i (indicated as Y):

fYS) Y (22)

Finally, in the Scatter stage, vertex i uses its new value
(Y) to generate messages and then sends these messages
to its outgoing neighbors. Usually, in order to improve
communication efficiency, the messages are batched in the
dedicated message buffers [3], [6] before sending them over
the network.

Once the vertex-centric computation model is activated,
the compute node begins to execute the vertex-target receiv-
ing/dispatching process concurrently. This process is an
integral part of the vertex-target communication model, as
discussed in the next subsection. As shown in Fig. 2b, each
incoming message batch is received by a message parser [6].
The message parser thread parses each message batch and
enqueues the messages in the message batch into the mes-
sage queues of the destination vertices. Thus, each vertex
can identify the messages sent to itself.

Each vertex i has two message queues, i.e., the receiving
message queue MQ_recv[i] and the input message queue
MQ_.input[i] [3], [6]. The former is used to store the mes-
sages that are sent to vertex i in current iteration. The latter
stores the messages received in the previous iteration and
serves as the input to the vertex-program(vertex i) in current
iteration. At the end of each iteration, the two message
queues switch their roles.

2.2 Vertex-Target Communication Model

As shown in Fig. 1, the vertex-target communication model
works as follows. At the sender side, any message generated
by a work thread is first sent to the user-space message
buffers [3], [6], [44]. When a message buffer is filled up, the
message batch is delivered to kernel network protocol stack

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.5, MAY 2019

where it is sent to the network. At the receiver side, when
a message batch is received by the kernel network protocol
stack, it is first delivered to the user-space. The message
parser then parses the message batch and enqueues the
messages in the message batch to the message queues of
the destination vertices [3], [6]. As mentioned before, this
communication model usually suffers from four extra com-
munication overheads, leading to long average message
delivery time.

Kernel Overhead. Existing distributed graph-processing
frameworks are built on an operating system kernel com-
munication protocol stack where the message batches are
passed through the network [3], [6]. Modern operating
system kernels provide a wide range of general networking
functionalities. This generality does, however, come at a
performance cost, severely limiting the packet processing
speed [14].

Multi-Copy Ouverhead. In high-bandwidth networks,
excessive data copying results in poor performance [17].
However, data copying occurs twice each at the sender side
and at the receiver side in existing vertex-centric distributed
graph-processing frameworks, as shown in Fig. 1.

Interrupt Overhead. Conventional network interface card
(NIC) drivers usually use interrupts to notify the operating
system that data is ready for processing. However, interrupt
handling can be expensive in modern processors, limiting
the packet receiving speed [15], [16], [18], [19].

Lock Overhead. Contention among threads on critical
resources via locks is a potential bottleneck that prevents
the high-bandwidth network capacity from being efficiently
utilized by distributed graph-processing frameworks [16].

2.3 Data Plane Development Kit

The Linux networking functionalities are designed for
general-purpose communication requirements. This general
design is convenient for “normal” users. However, for
many applications where fast packet processing is required,
these functionalities rapidly reach a limit when running on
a high-bandwidth network since the operating system can-
not handle more packets and thus starts dropping them
[20]. Data plane development kit (DPDK) is a fast user-
space packet processing framework that can easily enable
modern high-speed network devices (e.g., 10 Gbit/s even
40 Gbit/s Ethernet adapters) to work at line speed [15]. The
high-performance of DPDK stems from the key features of
bypassing kernel, zero-copy, poll mode driver and huge-page
memory allocations [15], [17].

3 SLIMMED-DOWN VERTEX-CENTRIC
COMPUTATION MODEL

3.1 Overview

We present the execution process of a typical compute node
in our BlitzG framework to help understand our slimmed-
down vertex-centric computation model.

Vertex Workload-Reduced Computation Process. In this
model, like the existing vertex-centric computation model,
each work thread in the compute node loops through its
vertices by using the vertex-program(vertexi) function. Unlike
existing vertex-centric computation model, as shown in
Fig. 3a, the vertex-program(vertexi) sequentially executes the

CHENG ETAL.: USING HIGH-BANDWIDTH NETWORKS EFFICIENTLY FOR FAST GRAPH COMPUTATION

Apply Scatter

[, 2 input[i))—> YIK é@ ”
Jao 2%

(a) slimmed-down vertex-program(vertex i).

Message Accumulator

Accumulated Values
2 _reev[0]

Incoming message buckets

b2 _recfv[i]

 _recv[v-1]

(b) message-centric receiving/accumulating process.
Fig. 3. The workflow on a typical compute node of BlitzG.

Apply and Scatter stages only, for each vertex i. In the Apply
stage, the input accumulated value 3_input[i] is used to
update the value of the vertex i (indicated as Y):

FYV S inputli])) - Y (3.1)

In the Scatter stage, vertex i uses its new value (Y) to gen-
erate messages for its outgoing neighbors. The messages are
constructed directly in the message buckets. A message bucket
is a message container consisting of the Ethernet header,
IP header and a number of data structures of messages, as
discussed in Section 4. When a message bucket is full, it is
sent to the network interface card (NIC) directly.

Message-Centric Receiving/Accumulating Process. Once the
slimmed-down vertex-centric computation model is acti-
vated, the compute node begins to execute the message-
centric receiving/accumulating process concurrently. This
process is an integral part of the light-weight message-
centric communication model, as detailed in Section 4. As
shown in Fig. 3b, instead of the message parser, a message
accumulator is used to ingest the incoming message buckets
where the value of each message msg in the message buck-
ets is accumulated through a generalized sum:

> _recvli] ® msg.value — 2 _reculi] (3.2)

where i is the destination vertex name of the message msg,
and 2 _recvli] is the receiving accumulated value of vertex i.

Each vertex i is associated with two user-defined accu-
mulated values, i.e., a receiving accumulated value 3_recv
[i] and an input message accumulated value X _input[i]. The
former is used to accumulate the values of the incoming
messages that are sent to vertex i. The latter serves as the
input of the vertex-program(vertex i). At the end of each itera-
tion, the two accumulated values switch their roles.

3.2 Discussion

Like vertex-centric computation model in Pregel-like graph-
processing frameworks, our light-weight message-centric
communication model is also the part of our slimmed-down
vertex-centric computation model. In order to fully exploit
the high-bandwidth network capacity for fast graph compu-
tation, our slimmed-down vertex-centric computation model

1173

first reduces the computation workload of each vertex by
moving the gather stage from the computation process to
the communication process since, the messages are gener-
ated by the vertex programs in the computation process.
Our slimmed-down vertex-centric computation model then
employs the light-weight message-centric communication
model to improve the communication efficiency signifi-
cantly. This is important since, for the distributed graph-
processing frameworks, the communication process is
always the performance bottleneck due to the costly commu-
nication overheads, especially when a high-bandwidth net-
work is available.

Although the amount of computation cannot be reduced,
by moving the gather stage from the vertex program in com-
pute process to the communication process. However, this
design is an appropriate and necessary choice due to the rea-
sons as follows. First, as mentioned before, since messages
are generated by the vertex programs in the computation
process, this design can improve the message generation
speed by reducing the computation workload of each vertex.
Second, more importantly, our communication model, with
the added gather workloads, is efficient enough so that the
communication process is not the performance bottleneck
anymore in the high-bandwidth network, making it possible
to fully exploit the high-bandwidth network capacity for fast
graph computation by using the commodity compute nodes
with limited core count.

Some existing distributed graph-processing frameworks,
such as GPS [6] and MOCgraph [21], employ the receiver
side combining technique that aims to reduce the memory
footprint at the receiver side. However, our computation
model is different from them in terms of the design goal and
the effectiveness. First, the goal of our slimmed-down ver-
tex-centric computation model is to fully exploit the high-
bandwidth network capacity for fast graph computation and
reduce the memory footprint. GPS and MOCgraph aim
to reduce the memory footprint by using the receiver side
combining technique. This can also reduce the workload
of vertex program, improving the message generation speed.
However, it does not improve performance since their per-
formance bottle is the communication process, especially
when a high-bandwidth network is available. Furthermore,
by using the receiver side combining technique, the commu-
nication workload of these frameworks are added, aggravat-
ing the problem of communication bottle. This is a tradeoff
between the performance and the reduced memory footprint.

4 LIGHT-WEIGHT MESSAGE-CENTRIC
COMMUNICATION MODEL

4.1 Overview

Our light-weight message-centric communication model, as
shown in Fig. 4c, is able to significantly reduce the commu-
nication time of an average message primarily because
of the following reasons.

First, in order to avoid kernel overhead of operating
system, our communication model first employs the Data
Plane Development Kit (DPDK) [15], a fast user-space
packet processing framework that has been gaining increas-
ing attention [12], [15], [16], [19]. DPDK allows user-space
applications using the provided drivers and libraries to

1174

Slimmed-down Vertex-Centric Computation

Message: | DestinationVeriesiD | MessageValue |

e MTU

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.5, MAY 2019

Legend:
Message Field Pointer

O Message Bucket Ring

@@ Receiving Queue

| Ethernet H‘::uicr] 1P Header | BucketNum, | ACKNum,
\

Message [Mcs\'ng\: I’ v,

v
Message Bucket.

Message bucket ring group

Source Vertex Program:
Apply, Scatter

Message bucket ring group

(a) The Data Structure of Message Bucket.

Light-weight Message-Centric

I
|
I
Rp.s L Ry Ry Rp.g I
|
I
I Communication

tail header

Message Accumulator

Sender | --- [Sender |

Message Bucket Sender

Legend: .Ful] Message Bucket

Linux Kernel

[Enkemal] | |

D.\'ot Full Message Bucket

I

I

7 1 I ...I A 1 |

User Space .‘ 1 . :
I

I

I

I

- TS ——— e
reeiloric | New Nic

Network Interface Cards (NIC) ork Interface Cards (NIC)

D e e s e e prami o ey |

(b) Message Bucket Ring.

Fig. 4. The BlitzG framework.

access the Ethernet controllers directly without needing to
go through the Linux kernel. These libraries can be used
to receive and send packets within a minimum number of
CPU cycles, usually less than 80 cycles, in contrast to the
approximately 200 cycles required to access the memory
[15]. The high performance of DPDK make it possible for
BlitzG to utilize the high-bandwidth networks efficiently.

Second, BlitzG eliminates the four rounds of data copying
in vertex-centric distributed graph-processing frameworks.
This is important since, in high-bandwidth networks, exces-
sive data copying results in poor performance [17]. At the
sender side, when each work thread executes its vertex pro-
grams, it updates the DestinationVertexID and MessageValue
fields of each message in the message buckets directly, avoid-
ing the message migrations to the message buffers in existing
vertex-centric distributed graph-processing frameworks. As
shown in Fig. 4a, a message bucket contains the following fields:
the Ethernet header, IP header, BuckNum, ACKNum, a number
of messages (payload) and pad. The BucketNum and ACKNum
fields are used to guarantee reliable transmission. We employ
the DPDK mbuf data structure [15] to store the message bucket
that is indexed by a pointer. When a message bucket is full, it
is flushed to the network interface card (NIC) directly by
using the user-space DPDK drivers deployed by the message
bucket sender, avoiding the data copying from the use space to
the kernel space. At the receiver side, the message accumulator
receives the message buckets from the NIC and accumulates
the message value of each message in the message buckets
directly to the 3 _reco[i] variable, where i is the vertex name
appearing in the message, avoiding the data copying from the
kernel space to the user space and the message migrations
from the use-space buffers to the message queues of the desti-
nation vertices. The accumulated values serve as the inputs to
the destination vertex programs in the next iteration.

Third, instead of using interrupts to signal packet arrival,
the receive queues of network controllers are polled by
the receiving threads directly, avoiding the costly interrupt
overheads.

Fourth, our communication model avoids the extra
overheads of packet fragmenting/defragmenting. Existing
vertex-centric distributed graph-processing frameworks
usually use large-size message buffers to reduce the average
overhead of each message [3], [6]. In this case, fragmenting/
defragmenting is required so that each message batch can be

(c) Any Pair of Compute Nodes.

encapsulated within data frames that have a size constrained
by the Maximum Transmission Unit (MTU). For example,
the MTU of Ethernet network is typically 1500 Bytes. How-
ever, packet fragmenting/defragmenting can decrease the
efficiency of packet processing when large-size packets pass
through the networks [22]. Instead of large size, our commu-
nication model avoids the fragmenting/defragmenting by
limiting the message bucket size to be slightly smaller than
the MTU. This design is based on the fact that the messages
of most graph algorithms are usually short and have a uni-
form size [7], [8]. Our communication model also supports
jumbo messages, each of which is composed of multiple
message buckets linked together through their “next” field,
albeit a rare case scenario.

Finally, the high performance of our communication
model also stems from the lockless design, as discussed
in Section 5.1.

4.2 Discussion

In recent years, several general-purpose DPDK-based trans-
port protocol, such as mTCP [23], have been proposed to
provide reliable communication service for the DPDK-
based applications. Like traditional TCP protocol, mTCP
can provide services simultaneously for multiple DPDK-
based applications due to the TCP header that includes the
information of src/dst PORT numbers. Furthermore, the
flows between two compute nodes can be routed on multi-
ple paths if ECMP (Equal-Cost Multipath Routing) is used.
This can help network switches to perform load balancing.
The generality does, however, come at a performance cost
and the low utilization of memory space. For example, in
order to provide services for multiple applications, large
memory space is required by mTCP to buffer the intermedi-
ate data frames from the NIC, for different applications
respectively. At the receiver side, the data frames are reor-
ganized in the buffers according to correct data flow of each
application, and then sent to the applications. The memory
and the computation overheads of the protocol stack are too
expensive to the communication-intensive and memory-
hungry applications, such as BlitzG.

In order to address this problem, instead of using existing
general-purpose DPDK-based transport protocol, we design
the light-weight message-centric communication model
specially for BlitzG, according the communication features of

CHENG ETAL.: USING HIGH-BANDWIDTH NETWORKS EFFICIENTLY FOR FAST GRAPH COMPUTATION

distributed graph computation. This communication model
removes the TCP/UDP headers away. At the receiver side,
the message accumulator threads receive the message buckets
from the NIC and process the messages in the message buck-
ets directly, avoiding the overheads of memory and computa-
tion for the third-party protocol stack. This design has two
limitations. The first one is that each NIC in a compute node
can only service one application. Multiple NICs are required
for each compute node to execute multiple applications
simultaneously, leading to high hardware costs. However,
this case usually rarely happens. For the communication-
intensive and memory-hungry applications, system efficiency
cannot be improved by executing this applications simulta-
neously. The second one is that all the flows between two
compute nodes will be routed on a single path if ECMP used.
However, this does not affect the load balancing in network
switches. Since the communication model of BlitzG is all-to-
all, that is, each compute needs to interact with each of the
other compute nodes. Furthermore, the traffic load of each
pair of compute nodes is nearly equal.

To sum up, for communication-intensive and time-sensi-
tive DPDK-based applications, such as BlitzG and nginx
[24], high performance and low overhead of memory can be
obtained by designing specialized communication models
for them. Due to the openness of DPDK, the design can be
flexible according to the key features of the application
for higher efficiency. Other DPDK-based applications can
improve the performance by using general-purpose DPDK-
based transport protocol. The generality does, however,
come at a limited efficiency.

4.3 Summary

The proposed light-weight message-centric communication
model significantly reduces the communication time of
average message by avoiding the costly extra communica-
tion overheads in existing vertex-centric distributed graph-
processing frameworks. Furthermore, this communication
model is highly memory-efficient because it ingests the val-
ues of incoming messages directly on the fly, eliminating
intermediate messages in vertex-centric distributed graph-
processing frameworks. Memory consumption is an impor-
tant concern in graph-processing systems [21]. Because,
given the aggregate memory capacity of the compute nodes
in a cluster, the memory-saving graph-processing systems
are able to process larger graphs or more complex graph
algorithms, leading to lower hardware cost.

5 DESIGN & IMPLEMENTATION

BlitzG is able to achieve the line-rate throughput of high-
bandwidth networks due to the slimmed-down vertex-
centric computation model and the light-weight message-
centric communication model, as discussed in Sections 3
and 4. In this section, we focus mainly on other key com-
ponents of BlitzG.

5.1 Lockless Design

Intuitively, the work threads in each compute node can
share the message buckets. Shared memory is typically
managed with locks for data consistency, but locks inevita-
bly degrade performance by serializing data accesses and

1175

increasing contention [16], [25]. To address this problem,
we propose parallelized message bucket ring groups, each of
which serves for one work thread. As shown in Fig. 4b, a
message bucket ring consists of a set of message buckets that are
used to store messages with the same remote compute node
as their destination. As shown in Fig. 4c, each work thread
has a message bucket ring group that includes P-1 message
bucket rings, where P is the number of compute nodes. Each
message bucket ring is dedicated to one remote compute node
independently. The message fields of each message bucket
ring are updated by its work thread sequentially in order by
using the automatically incremented value of a message
field pointer. When all the message fields in a message
bucket are updated, the message bucket is marked to be
full, and its descriptor is sent to the message bucket descriptor
queue of the message bucket ring group.

The message bucket sender module has a number of sender
threads, each of which manages several message bucket
descriptor queues, as shown in Fig. 4c. Each sender polls its
message bucket descriptor queues. When a message bucket
descriptor is obtained from a message bucket descriptor queue,
the message bucket indexed by the descriptor is directly sent
to the NIC. Using this design, each sender can also work
independently without accessing any shared data.

Next we discuss the lockless design of message bucket
receiving/processing. Modern NICs are usually supported
by the Receiver-Side Scaling (RSS) technique [12] with mul-
tiple queues that allow the packet receiving and processing
to be load balanced across multiple processors or cores. For
example, the Mellanox ConnectX-3 NIC has up to 32 queues
[12]. In order to completely parallelize the message bucket
receiving/processing, the message accumulator module has
multiple accumulator threads, each of which manages sev-
eral receiving queues of the NIC. By using this design, each
accumulator thread is allowed to work independently.

Summary. There are three key components in our BlitzG
framework, i.e., computation(work threads), message bucket
sender and message accumulator. Due to the lockless design,
the work of each key component is parallelized by multiple
dedicated threads, each of which works independently.
Using this design, BlitzG obtains high scalability in terms of
core count that enables high-bandwidth network to be fully
utilized. Furthermore, due to the lockless design, each
thread of the three key components is busy all the time,
enabling the dedicated cores to be utilized efficiently. Once
the work threads begin to work, the accumulator threads
receive and then process the message buckets continuously,
significantly reducing the polling time for the arrivals of the
message buckets.

5.2 Reliable Transmission

Reliable transmission must be ensured even though the
dropped packet rate is very low in a high-quality network.
BlitzG only needs to guarantee reliable transmission between
any pair of compute nodes.

“Sending with Acknowledgement” Mechanism. At the begin-
ning of each iteration, each side of a pair of compute nodes
begins to send message buckets to its peer. The sent message
buckets are numbered sequentially. The sequence number of
each message bucket is carried in the BucketNum field in the
message bucket. The AckNum field in each message bucket is

1176

used to inform the peer that all the message buckets with their
sequence number being less than or equal to the AckNum
value have been received. When the expected AckNum value
has not been received within an expected time interval, the
message buckets with their sequence number being larger
than the last received AckNum value will be re-sent to the
peer. Message bucket transmission between any two compute
nodes proceeds with this “sending with acknowledgement”
mechanism. When a compute node sends the last message
bucket to its peer, a “last” flag is carried in the BucketNum field
in the message bucket to inform the peer to stop receiving. In
this case, the compute node without message buckets to send
is still ready for receiving message buckets from its peer until
the “last” signal is received.

Delayed Processing Policy. In our “sending with acknowl-
edgement” mechanism, a connection descriptor is designed for
any given pair of compute nodes. These connection descriptors
are used by the sender threads and the accumulator threads to
trace and guarantee the reliable message transmission pro-
cess between any pair of compute nodes. Collisions can
occur in some cases. For example, when two different accu-
mulator threads on the same compute node have received
their respective message buckets from the same remote com-
pute node, each of them needs to process its message bucket
and update the status of the same connection descriptor simul-
taneously. In this case, in order to avoid contention over-
heads to achieve higher performance, our approach is to
delay the processing of any message bucket that has a Bucket-
Num being larger than a predefined threshold. The delayed
thread continues to receive the subsequent message buckets,
and the delayed message buckets will be processed, along
with the new ones in the correct order. This approach ena-
bles each communication thread to work independently,
improving the utilization of cores and system scalability.

Delayed Sending Policy. In order to utilize the available net-
work bandwidth capacity efficiently, each sender thread
should send the message bucket to the NIC immediately when
a message bucket descriptor is obtained from a message bucket
descriptor queue. However, for any pair of compute nodes, the
sender side should delay the sending process to slow down
its sending rate when the network congestion occurs. Specifi-
cally, there is a time period between any two consecutive
sending operations. The time period is amended dynamically
according to the situation of congestion, which is defined as
AST x N.AST is the average time period for sending a send-
ing operation, which is set to an initial value from the configu-
ration file, and then amended during the execution process. N
is a nonnegative integer that is set to 0 initially. During the exe-
cution process, N is increased by 1 according to the two cases
that indicate the occurrence of congestion. First, the sender
side has received three consecutive stale AckNum values. Sec-
ond, the sender side does not receive any acknowledgement
message within an expected time interval. Conversely, when
three consecutive new AckNum values have been received, N
is decreased by 1, with the condition of N > 0.

A NST(next sending time) field in the connection descriptor
helps the sender side to control the sending speed, which is
set to the start time of the graph-computing job. Specifically,
when a message bucket is ready to send, its sender thread
needs to check the NST field. If the value of NST is later than
the current time, the sender thread will abandon this sending

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.5, MAY 2019

operation, and continue to service other connections. Other-
wise, the sender thread first sends the message bucket to the
network interface card (NIC), and then updates the NST field
by using the value of current time + ASTxN.

Discussion. The overheads of re-sending can be avoided
by the coding techniques, such as erasure coding, which can
recover the missing packets according to the coded infor-
mation from other received packets. This is attributed to
the DPDK that allows the user space applications to handle
the NIC directly. The effectiveness of this method may be
limited for the graph-processing systems that are designed
for the high-bandwidth networks, such as BlitzG. Since the
dropped packet rate is low in a high-quality network, there
is a tradeoff between the avoided overheads of re-sending
and the extra costs of the coding technique at both the
sender and receiver sides.

However, this method may be useful for the graph-proc-
essing systems that run on the low-bandwidth networks.
Since the overhead of re-sending is high in this case. However,
this is non-trivial work due to the following reasons. First, the
overhead of the coding technique should be low enough,
compared with the avoided overhead of re-sending. Second,
compared with the method of re-sending, the method of cod-
ing technique requires larger memory space in the receiver
side to store the arrived and processed packets that are used
to recover the missing packets. Third, if there are too many
missing packets, the receiver side cannot recover them due to
the incomplete coded information. In this case, it is important
to select the right time for re-sending. Hence, it is meaningful
to start a new study that can improve the efficiency of the
reliable transmission in user-space graph-processing frame-
works by using coding technique, in case of the high-
bandwidth network is not available.

Summary. BlitzG can work independently without other
transport protocols, such as TCP. Since, by using “sending
with acknowledgement” mechanism and two policies
of delayed processing and delayed sending, the reliable
transmission between any pair of compute nodes can be
guaranteed.

5.3 NUMA-Based Performance Optimization

Existing distributed graph-processing frameworks routinely
suffer from high communication costs. BlitzG overcomes the
communication bottleneck by exploiting the high-bandwidth
networks efficiently. Furthermore, today’s network technol-
ogy has developed so rapidly that high-bandwidth networks,
such as 100 Gbps Ethernet, are easily accessible than ever
before [45]. Hence, it is an opportunity for BlitzG to obtain
higher runtime performance by improving the execution effi-
ciencies of the involved threads. The higher efficiency of the
involved threads can speedup the processes of message gen-
eration, sending, receiving and processing, leading to higher
runtime performance. During the execution process of BlitzG,
the involved threads need to access memory frequently
due to the fine-grained vertex-centric computation model.
Hence, we further optimize the runtime performance by
using a NUMA-based method as follows.

Fine-Grained and NUMA-Oriented Data Layout. The
NUMA-oriented data layout is automatically configured
when initializing the system. BlitzG first detects the number
of nodes in the compute node, and then sets the data layout

CHENG ETAL.: USING HIGH-BANDWIDTH NETWORKS EFFICIENTLY FOR FAST GRAPH COMPUTATION

according to the number of nodes. BlitzG employs the fine-
grained data layout to minimize remote accesses among the
nodes. Specifically, each work thread executes its assigned
vertices using a message bucket ring group that includes P-1
message bucket rings, where P is the number of compute
nodes. Each message bucket ring is dedicated to one remote
compute node independently. This is different from existing
distributed graph-processing frameworks that use large
buffer to hold the intermediate messages. Furthermore, each
bucket descriptor queue is also managed independently by its
sender thread. Hence, the graph data, including the vertices,
message bucket ring groups and bucket descriptor queues, can be
co-located to respective nodes according to work threads.

Minimized Remote Accesses. There are three key components
in BlitzG, i.e., computation(work threads), message bucket
sender and message accumulator. In each iteration, the work of
each key component is parallelized by multiple dedicated
threads, each of which works independently. In the computa-
tion component, each vertex iis executed by its work thread
by using the vertex-program(vertexi) that first reads the accu-
mulated value 3 _input[i], and then generates one message for
each of its neighbors by updating the DestinationVertexID and
MessageValue fields of each message in the message buckets
directly, requiring one read from and di writes to the memory,
where di is the number of the outgoing neighbors of vertex i.
In the message bucket sender component, as detailed in Sec-
tion 5.1, the sender threads require one read from the memory
before sending each message bucket to NIC.

Due to the fine-grained and NUMA-oriented data layout,
each thread of the components of computation and message
bucket sender can access the local memory of its node directly
without any remote accesses, leading to higher execution
efficiency. However, at the end of each iteration, the message
accumulator component in each compute node needs to pro-
cess the local message buckets that are sent to this compute
node itself. When one message bucket is received, the value
of each message i in the message bucket will be accumulated
to the variable % _recv[i] that is located in the memory of one
of other nodes possibly. In order to reduce the number of
remote accesses, BlitzG first employs one local message
queue for each node of the compute node. In each iteration,
the work threads send each local message to its local message
queue. This also incurs a remote access if this message
belongs to one of the other nodes. In order to address this
problem, BlitzG then introduces the 2-Level hierarchical par-
titioning to reduce the number of the remote memory
accesses caused by the local messages.

Like most existing distributed graph-processing frame-
works, BlitzG first distributes the vertices of the input graph
to the compute nodes of the cluster by using a lightweight
graph partitioning method, such as Round-robin. Unlike
most existing distributed graph-processing frameworks,
BlitzG further distributes the vertices in each compute node
to the nodes of the NUMA architecture by using METIS
[26], a high-quality graph partitioning method. Since the
number of the vertices in each compute node is small, com-
pared with the first level partitioning. Specifically, in each
compute node, BlitzG first assigns the vertices to the nodes
evenly according to the number of the nodes, and then
employs the METIS to further improve the quality of the
partitioning result. Due to the second level partitioning, the

1177

number of remote memory accesses of the message accumula-
tor component can be reduced significantly, resulting in
higher efficiency of each accumulator thread.

Discussion. The effectiveness of the NUMA-based optimi-
zation depends mainly on a key precondition that the per-
formance of the graph-processing framework is dominated
by the execution threads that access memory frequently.
For example, Polymer [27] improves the performance of in-
memory single-node graph-processing frameworks signi-
ficantly by using the NUMA-aware optimization. Since the
in-memory single-node graph-processing frameworks have
no costly communication overheads. As a distributed graph-
processing framework, BlitzG first overcomes the communi-
cation bottleneck, and then improves the performance by
using the NUMA-based performance optimization, further
obtaining ~32 percent runtime improvement.

6 EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments to evalu-
ate the performance of BlitzG. Experiments are conducted
on a network with leaf-spine topology that consists of leaf
switches, spine switches and core switches. The Mellanox
SN3000 switches are used, which is part of Mellanox’s
complete end-to-end solution, providing 10 GbE through
200 GDbE interconnectivity within the data center. A 32-node
cluster is used in these experiments. Each compute node
has two 6-core Intel(R) Xeon(R) E5-2620 processors with
32 GB of RAM and a Mellanox ConnectX-3 VPI NIC. Each
core has two logical cores by means of the hyper-threading
technology. The NIC of each compute node is connected to
one of the leaf switches via a fiber cabling which can sup-
port up to 200 Gbps bandwidth. The link speed between
each compute node and its leaf switch is set to a value
according to the NIC speed. Hence, in our experiments, the
line speed refers to the NIC speed . We use 8 GB of RAM for
huge pages, based on the fact that in Intel’s performance
reports 8 GB is set as a default huge page size [15]. The oper-
ating system of each node is CENTOS 7.0 (kernel3.10.0).
DPDK-2.1_1.1 is used.

Graph Algorithms. We implement several graph algo-
rithms to evaluate BlitzG by: Single-Source Shortest-Paths
(SSSP) [30], PageRank (PR) [31], Community Detection (CD)
[32] and Connected Components (CC) [32].

Baseline Frameworks. We compare BlitzG with two baseline
frameworks. One is an up-to-date version of GPS, which is an
open-source Pregel implementation from Stanfords InfoLab
[6]. It is a representative BSP-based distributed graph-proc-
essing framework. The other is GraphLab, an open-source
project originated at CMU [4] and now supported by Graph-
Lab Inc. GraphLab is a representative distributed shared-
memory graph-processing framework. We use the latest
version of GraphLab 2.2, which supports distributed compu-
tation and incorporates the features and improvements of
PowerGraph [5], [33].

Datasets. We evaluate BlitzG using three real-world
graph datasets that are summarized in Table 1.

6.1 Performance Analysis

BlitzG is compared with GPS in terms of the total runtime
and throughput. Each framework, built on a 24-node

1178

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.5, MAY 2019

TABLE 1
Graph Datasets Summary
DataSets V] |E| Type Avg/In/Out degree ~ Max -/In/Out degree Largest SCC
LiveJournal [28] 48 %105 69 x 105 Social Network 18/14/14 20K /13.9K /20K 3.8M (79%)
Twitter-2010 [29] 41 x 10° 1.4 x 10° Social Network 58/35/35 2.9M/770K/2.9M 33.4M (80.3%)
UK-2007-05 [29] 106 x 105 3.7 x 10° Web 63/35/35 975K /15K /975K 68.5M (64.7%)

cluster, runs the PageRank algorithm with the Twitter-2010
on the 1 Gbps, 10 Gbps and 40 Gbps Ethernets respectively.
GPS is evaluated with its default size of message buffers [6].

The experimental results shown in Fig. 5a indicate that
the runtime of GPS is not improved on a higher-bandwidth
network due to two factors, i.e., the slow process of message
generation and the costly extra communication overheads.
The two factors prevent GPS from utilizing the network
bandwidth capacity effectively, achieving only 45, 4.6 and
1.2 percent of line-speed throughputs respectively of the
1 Gbps, 10 Gbps and 40 Gbps Ethernet networks, as shown
in Fig. 5b.

However, BlitzG obtains significant performance improve-
ment on a higher-bandwidth network. The reasons are two-
fold. First, the slimmed-down vertex-centric computation
model that significantly accelerates message generation
by reducing the workload of each vertex. Second, the light-
weight message-centric communication significantly reduces
the communication time of average message by eliminating
the costly extra communication overheads. The faster mes-
sage generation and the shorter communication time of aver-
age message enable the network bandwidth capacities to
be utilized at 98, 96 and 95 percent respectively when runn-
ing on the 1 Gbps, 10 Gbps and 40 Gbps Ethernet networks.
In these experiments, BlitzG is 2.1x, 12.7x and 25.3x faster
than GPS respectively when running on the 1 Gbps, 10 Gbps
and 40 Gbps Ethernet networks. These experimental results
indicate that BlitzG significantly outperforms GPS in terms of
runtime, especially when a higher-bandwidth network is
available. We evaluate BlitzG comprehensively with different
graph algorithms on various graph datasets against GPS.
Experimental results indicate that BlitzG runs 17.2x-27.3x
(with an average of 20.7x) faster than GPS respectively on
various graph algorithms and graph datasets.

6.2 Impact of Core Count

We compare BlitzG with GPS in terms of the impact of the
number of cores in each compute node. Each framework
with a 24-node cluster runs 10 iterations of PageRank with
the Twitter-2010. GPS parallelizes a graph-computing job

300 =100 — _ _
1 < 90 4
250 — T 80 3
=1 4
< 70 4
—200 — 2 70 |
S1so-| (WEGPSTBluG] | 2 50 GPS BlitzG |
E A £40
= 100 — %D 30 4
2 50 - 3 20 4
e i =104
0 T T T T T H O I T T
1Gbps 10Gbps 40Gbps 1Gbps 10Gbps 40Gbps

Networks Networks

(a) Runtime. (b) Throughput Rate.

Fig. 5. Performance Analysis. The “throughput rate” is defined as the
throughput value normalized to the line-speed throughput of the network,
i.e., throughput rate = throughput /(line-speed throughput of the network).

by using multiple workers in each compute node [6]. Each
worker has a work thread, a message parsing thread and
several MINA (an Apache network application framework)
threads [6], [34]. To efficiently utilize the CPU cores, MINA
sets the size of the thread pool as “number of logical cores +
1” by default. Hence, we study GPS in terms of the impact
of the number of workers in each compute node. GPS runs
repeatedly by increasing the number of workers in each
compute node. Experimental results, as shown in Fig. 6,
indicate that GPS has a sweet spot at 2 workers per compute
node: adding more workers degrades performance. The rea-
son is contention for the shared message buffers [35].
In each experiment, the number of threads used by GPS
in each compute node is larger than 24, the number of logi-
cal cores in each compute node. Most of the dedicated
threads are used by the MINA. This indicates that the com-
munication load of GPS is heavy.

Unlike GPS, BlitzG uses multithreading in its three key
modules of each compute node: computation (work threads),
message bucket sender and message bucket accumulator.
Instead of using a thread pool, BlitzG binds each thread to a
dedicated logical core. BlitzG runs repeatedly by increasing
the number of threads of each compute node, that is, each
compute node is assigned 3, 6, 9, 12, 15 and 18 threads in dif-
ferent experiments, as shown Fig. 6. Experimental results
show that the runtime of BlitzG is reduced gradually until
reaching the peak performance when 18 threads are used by
each compute node. We also conduct experiments to identify
the minimum numbers of required threads for its three key
modules that contribute to the peak performance of BlitzG.
Experimental results indicate that BlitzG can reach its
peak performance by assigning 4 threads to message bucket
sender, 6 threads to message bucket accumulator, and 6
threads to computation. The reason is that the message
bucket sender has lighter workload.

6.3 Speed of Message Generation
In order to study the effectiveness of our slimmed-down ver-
tex-centric computation model, we compare BlitzG with GPS

350
Each worker consists of three thread groups:

- B (1)A message parser thread
T (2)MINA threads H
g 300 — (3)A work thread
E | — FGprg)
~

250

T T T T

1worker 2workers 3workers 4workers Sworkers 6workers
70
—~ 60 5
50
40
30 4

20 -

10 g N
T T T T
3threads 6threads 9threads 12threadsl5threadsl8threads

N

~—

Runtimel

Fig. 6. Impact of number of threads.

CHENG ETAL.: USING HIGH-BANDWIDTH NETWORKS EFFICIENTLY FOR FAST GRAPH COMPUTATION

I BlitzGL_] GPS[__] GPS with RSC]

600

500 —
> 4
5400 —
§ 300]
2200 —

100 —

Il BlitzG
[_]Gps
[GPS with RSC

(# of messages)/s
—_ N w N W
N T T O

0 T

0

g | I I I I I T I
I g 1 2 3 4 5 6 7 Pagerank CD
Compute Node Graph Algorithms
(a) Message Generation Speed. (b) Runtime.

Fig. 7. Message generation speed& performance impact.

in terms of message generation speed. Each framework is
run on an 8-node cluster executing five supersteps of the
PageRank algorithm with the Twitter-2010. In each compute
node, BlitzG assigns 4 threads to the message bucket sender,
6 threads to the message bucket accumulator, and 6 threads
to computation since the experimental results, as shown in
Section 6.2, indicate that BlitzG with this configuration is
able to achieve near-line-speed throughput of the 40 Gbps
network. For fair comparison, GPS assigns 4 workers to each
compute node, with each worker consisting of one work
thread, one message parser thread and 2 MINA threads, for
a total of 16 threads.

In order to obtain the message generation speed of each
compute node, the number of total generated messages and
the computation time should be obtained. Since the mes-
sages are generated by the work threads of the computation
module, each loops through its vertices to generate mes-
sages. The generated messages are first sent to the message
buffers in GPS (message bucket rings in BlitzG) where the
message batches are then sent to the network. In this experi-
ment, the computation time does not include any communi-
cation latency, due to the two reasons as follows. First, in
both BlitzG and GPS, the computation and communication
processes are executed in parallel. Once the computation
module is activated, the sender module begins to receive
and send messages concurrently. Second, in order to avoid
idle time experienced by work threads to wait for the com-
munication, both the message buffers of GPS and the mes-
sage bucket rings of BlitzG have a sufficiently large value.

Experimental results, as shown in Fig. 7, indicate that the
message generation speeds of compute nodes in BlitzG range
from 4.02 x 10® to 4.73 x 10® messages/second. In the Page-
Rank algorithm, each message consists of an 8-byte long-
integer number to carry the destination vertex name and a
4-byte floating-point number to carry the pagerank value. In
this case, the message generation speed of each compute
node in BlitzG can provide sufficient communication work-
load to fully utilize the 40Gbps network if the communica-
tion model is also efficient enough. However, each compute
node in GPS fails to provide so fast message generation
speed as BlitzG. The message generation speeds of the com-
pute nodes in GPS are only 43-51 percent of those of BiltzG.
The message generation speeds are sufficient for GPS due to
its slower communication model, but insufficient for BlitzG
due to its highly efficient communication model. Intuitively,
GPS can also provide fast message generation speed as
BlitzG by using more work threads. However, most existing
distributed graph-processing frameworks are built on

1179
300 350
5250 300
—
3 2250 -
5200 H 2 Ezoo | [BlizGL_] GraphLab
m o=] ~ .
£ 150 | E B Grapiish £ 150] GPs [GPS with RSC
ﬁ 100 |EEE] GPs [N GPS with RSC| | & |0]
50 50
0 0 . DJJ .
PR SSSP CcD PR SSSP cD
(a) Memory:. (b) Runtime.

Fig. 8. Memory consumption & performance.

commodity compute nodes with limited core count for low
hardware costs and better scalability. Furthermore, as veri-
fied in Section 6.2, the communication workload of GPS is
heavier than its computation workload. In this case, increas-
ing the number of work threads can deprive CPU resources
of communication threads, leading to worse overall system
performance. In this experiment, the message generation
speed of BlitzG is faster than that of GPS significantly.
Experiments are also conducted with CC, CD and SSSP algo-
rithms. Similar experimental results are obtained.

Experiments also are conducted to study the effective-
ness of the receiver side combining technique in GPS. With
the receiver side combining (RSC) configuration, GPS is run
on an 8-node cluster executing five supersteps of the Pag-
eRank algorithm with the Twitter-2010. As shown in Fig. 7,
GPS with receiver side combining technique obtains 79 per-
cent improvement over its original configuration in terms
of message generation speed, but at the cost of a 9 percent
performance loss in runtime. Experimental results indicate
that GPS with receiver side combining technique can also
improving the message generation speed significantly by
reducing the workload of each vertex in the computation
module. However, this gain cannot improve the perfor-
mance of GPS. In GPS, the performance bottleneck is the
communication process, especially in a network ecosystem
with high bandwidth. By using the receiver side combining
technique, the communication workload is added, aggra-
vating the problem of communication bottleneck.

6.4 Memory Consumption & Performance
MOCgraph [21] can achieve a similar performance to Graph-
Lab [4] with significantly smaller memory consumptions.
GraphLab is an open-source project originated at CMU [4]
and now supported by GraphLab Inc. It is a representative
distributed shared-memory graph-processing framework.
We also compare BlitzG with GraphLab in terms of memory
consumption and performance. We use the latest version of
GraphLab 2.2, which supports distributed computation and
incorporates the features and improvements of PowerGraph
[4], [5]. Each framework with a 24-node cluster runs SSSP,
PR and CD respectively on the Twitter-2010. Fig. 8 shows the
experimental results. Although the memory consumption of
GraphLab is about 4.3x-5.6x larger than that of BlitzG, BlitzG
can achieve 9.6x-11.8x performance improvement over
GraphLab. The reasons are twofold. First, like MOCgraph,
BlitzG greatly reduces the memory footprint by significantly
reducing intermediate data. Second, unlike MOCgraph,
BlitzG significantly speeds up the message generation and
reduces the communication time of average message, lead-
ing to the higher performance.

1180
550 1
500 7 —0O—GPS
7450
S 400
§350 — 2.6x faster than baseline
£300 \
67250
200 T T T T T T T T T T T 1
g 10 12 14 16 18 20 22 24 26 28 30 32
35
@30 —A— BlitzG
g 251
= 20 3.9x faster than baseline
=]]
& 1]
10 4 N
5 T T T T T T T T T T T
8§ 10 12 14 16 18 20 22 24 26 28 30 32
Number of Compute Nodes

Fig. 9. Scalability.

We also repeated experiments above to study the receiver
side combining technique of GPS in terms of the memory con-
sumption and performance. As shown in Fig. 8, compare with
its original configuration, GPS with receiver side combining
technique obtains a memory footprint reduction of ~61 per-
cent. However, this is a tradeoff between the performance
and the reduced memory footprint since the performance is
also reduced in this case, as mentioned in Section 6.3.

6.5 Scalability

We conduct two sets of experiments to evaluate BlitzG
against GPS in terms of the impact of the number of com-
pute nodes. For each set of experiments, each framework
runs 10 iterations of PageRank on the Twitter-2010 graph
repeatedly, with the number of compute nodes ranging
from 8 to 32. Note that each framework needs at least 8 com-
pute nodes to run this graph-computing job. As shown in
Fig. 9, the runtime of BlitzG is reduced gradually by increas-
ing the number of compute nodes. BlitzG runs 3.9x faster
when running on a 32-node cluster than on an 8-node one.
However, GPS runs only 2.6x faster when running on a 32-
node cluster than on an 8-node one. These experimental
results indicate that BlitzG has higher scalability than GPS.
The high scalability stems mainly from the lockless design
of the light-weight message-centric communication model.
However, the high communication cost is most likely the
key contributor to the weaker scalability of GPS.

6.6 Reliable Transmission

Experiments are conducted to study the effectiveness and effi-
ciency of the “sending with acknowledgement” transmission
mechanism. BlitzG runs 10 iterations of PageRank on the
Twitter-2010 graph repeatedly by increasing the number of
the work threads in each compute node, thus controlling the
speed of message generation. In these experiments, we assign
4 threads to the message bucket sender, 6 threads to the mes-
sage bucket accumulator. Experimental results, as shown in
Table 2, indicate that there are very few dropped message
buckets. The rate of the dropped message buckets is less
0.19 percent. By resending the dropped message buckets,
100 percent of the sent message buckets are received
successfully. The network bandwidth capacity utilization
(throughput rate) of the 40 Gbps network increases with

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.5, MAY 2019

TABLE 2
Reliable Transmission

Thread Count Loss Rate Re-sending Final Success

(Computation) (First Time) Times Rate
1 0.06% 1 100%
2 0.09% 1 100%
3 0.13% 1 100%
4 0.11% 1 100%
5 0.12% 1 100%
6 0.19% 1 100%
7 0.13% 1 100%
8 0.09% 1 100%
9 0.13% 1 100%
10 0.14% 1 100%

the number of work threads and reaches its peak value of
95 percent. These experimental results indicate that the
“sending with acknowledgement” transmission mechanism
is highly effective and efficient in providing transmission
reliability.

6.7 DPDK versus RDMA

In recent years, several distributed graph-processing frame-
works, such as Chaos [36], employs RDMA (Remote Direct
Memory Access) technique [37] to provide high network
bandwidth, aiming to reduce communication time. We
compare RDMA with DPDK that is used in our light-weight
message-centric communication model. For fair compari-
son, we implement the interaction between any pair of com-
pute nodes by using RDMA technique. For RDMA, RoCE is
used due to its higher performance, compared with iWARP.
We call this version of BlitzG as BlitzG+RDMA. Each ver-
sion of BlitzG, built on a 24-node cluster, runs the PageRank
algorithm with the Twitter-2010 on the 10 Gbps, 20 Gbps,
30 Gbps and 40 Gbps Ethernets respectively.

Experimental results, as shown in Fig. 10, indicate that
BlitzG with DPDK obtains significant performance impro-
vement on a higher-bandwidth network, achieving nearly
line-speed throughput of each network. However, BlitzG
with RDMA achieves the peak performance when the net-
work bandwidth is limited to 20 Gbps. A higher network
bandwidth does not contribute to higher performances and
throughput. When BlitzG with RDMA achieves its peak
performance, the measured actual obtained bandwidth is
18.7 Gbps.

These experimental results indicate that DPDK is notably
superior to RDMA in terms of efficiency. This is also evi-
denced by other related works [38]. There are likely two rea-
sons as follows. First, compared with DPDK, RDMA moves

P T — 45
2,551 [~ BlitzG with DPDK 40 —&— BlitzG with DPDK
5 304 [C@—BIitzG with RDMA / 2 35 —@— BlitzG with RDMA
Q 30 CE—BHzO with ROMA]]
3253 g 30
£20 £ 257
315 5 20
2 7] K5]
E10]]
[104

fo 147 20 3 4
Network Bandwidth(Gbps)

(b) Runtime.

To 187 20 30 4o
Network Bandwidth(Gbps)
(a) Throughput.

Fig. 10. DPDK versus RDMA.

CHENG ETAL.: USING HIGH-BANDWIDTH NETWORKS EFFICIENTLY FOR FAST GRAPH COMPUTATION

45 —

[] Original BlitzG
[] NUMA optimization with one NIC
I NuUMA optimization with two NICs

[T |

I T I
SSSP

I T I
PageRank CcC CD

Fig. 11. Effectiveness of NUMA-based optimization.

the protocol stacks down to the NIC, depriving the limited
computation resources of NIC. Second, by using DPDK, the
workload of NIC is light. In order to improve the throughput
of the network in the DPDK-based system, the effective solu-
tion is to add the core count dedicated to communication.
In the DPDK-based system, the communication is light since
the costly overheads of kernel, interrupt and data copying
between kernel space and user space have been eliminated.
Hence, DPDK is useful for the communication intensive
applications, such as distributed graph-processing systems,
due to its flexibility for users and high performance. RDMA is
suitable for the applications that have a relatively light com-
munication workload, but require lower communication
latency, due to its user friendliness for users to implement
their applications. Since both DPDK and RDMA have low
communication latency.

6.8 Effectiveness of NUMA-Based Optimization
Experiments are conducted on a cluster of 8 compute nodes
to study the effectiveness of the NUMA-based optimization.
Each compute node is with 64 GB DRAM and two 6-core
Intel Xeon E5-2620 processors. The whole memory is orga-
nized in two NUMA nodes, each has 32 GB DRAM. In order
to study the core affinity of the NICs, each processor node is
directly connected to one 100 Gbps Mellanox NIC using PCle
gen2. Access to hardware resources in the remote NUMA
domain uses an interconnect between two processors.

BlitzG first runs PageRank with 10 supersteps with two
configurations of original and NUMA-based optimization
(one NIC) respectively. In these experiments, as shown in
Fig. 11 BlitzG with NUMA-based optimization (one NIC)
obtains ~32 percent runtime improvement over the original
case. The performance gain stems from the NUMA-based
optimization that reduces the number of the remote memory
accesses significantly, resulting in higher execution efficiency
of each thread of the three key components in BlitzG, i.e.,
computation, message bucket sender and message accumulator.
In order to study the impact of the core affinity of the NICs,
BlitzG then runs PageRank 10 supersteps with the NUMA-
based optimization, by using the configuration of two NICs.
In this experiment, BlitzG obtains ~6 percent runtime
improvement over the one NIC case. The reason is that, in
the case of two NICs, each thread of the message accumulator
component receives the message buckets from the NIC of its
node respectively. However, in the one NIC case, the receiv-
ing threads in one node need to receive the message buckets
from the NIC that has the better affinity to another node.
Experiments are also conducted with CC, CD and SSSP
algorithms. Similar experimental results are obtained.

1181

7 RELATED WORK

In this section, we briefly discuss the work on distributed
graph-processing frameworks most relevant to our BlitzG.

Communication Efficiency. Pregel + [39] develops two tech-
niques to reduce the number of messages. The first technique
is to create mirrors of each high-degree vertex, aiming to com-
bine the messages of the high-degree vertex. However, since a
mirrored vertex forwards its value directly to its mirrors, it
loses the chance of message combining. Therefore, there is a
tradeoff between vertex mirroring and message combining in
reducing the number of messages [40]. The second technique
is designed for pointer jumping algorithms where a vertex
needs to communicate with a large number of other vertices
that may not be its neighbors. This technique can prevent ver-
tex r from receiving and sending a lot of messages, by combin-
ing all requests on each worker as one request towards vertex
r [40]. GPS [6] introduces the dynamic repartitioning and
large adjacency list partitioning (LALP) techniques to reduce
the number of messages sent over the network. However,
dynamic repartitioning also introduces extra network work-
load to reassign vertices among workers, leading to overhead
that sometimes exceeds the benefits gained [30].

Memory Consumption. MOCgraph [21] reduces the mem-
ory footprint by significantly reducing intermediate data.
This approach is very useful for processing larger graphs or
more complex graph algorithms within the same memory
capacity. Giraph [9] serializes the edges and messages into
byte arrays to reduce the number of objects, aiming to
improve the memory utilization. Furthermore, a superstep
splitting technique is developed to split a message-heavy
superstep into several steps, so that the number of messages
transmitted in each step does not exceed the memory size
[40]. Like these techniques, BlitzG is memory-saving due to
its light-weight message-centric communication model.
However, Unlike these techniques, our communication
model aims mainly to reduce the communication time of
average message by avoiding the costly extra communica-
tion overheads, as mentioned before.

DPDK-Based Applications. The DPDK framework is pro-
posed recently to provide capacities of fast packet process-
ing in software [15], which has been gaining increasing
attention. In recent years, several large-scale internet serv-
ices, such as DPDK-nginx [24] and DPDK-redis [41], have
been transplanted to DPDK framework, aiming to provide
high-quality services by improving the communication effi-
ciency. DPDK has also been used to the IoT (Internet of
Things) system that typically encompasses a number of
devices and sensors and is required to process a large num-
ber of messages at a high speed [42]. While BlitzG employs
the DPDK technology to improve the communication effi-
ciency in distributed graph-processing frameworks.

RDMA-Based Graph-Processing Frameworks. Chaos [36] is a
disk-based distributed graph-processing framework. Its sys-
tem performance relies heavily on the assumption that net-
work bandwidth far outstrips storage bandwidth [36]. In
order to improve communication efficiency, Chaos employs
RDMA (Remote Direct Memory Access) technique to provide
high network bandwidth, aiming to reduce communication
time. BlitzG is significantly different from Chaos because the
former is designed to reduce the high communication costs

1182

experienced by existing in-memory distributed graph-
processing frameworks while the latter aims to improve the
performance of disk-based distributed graph-processing
frameworks by reducing disk I/O and communication costs.
GraM [13] improves communication efficiency by using
the RDMA-based communication stack that preserves
parallelism in a balanced way and allows overlapping of com-
munication and computation. Unlike RDMA-based graph-
processing frameworks, BlitzG employs the data plane devel-
opment kit (DPDK) to speedup the communication process.
DPDK is a fast user-space packet processing framework that
can easily enable the high-speed network devices to work at
line speed [15].

8 CONCLUSION

In this paper, we propose a highly efficient light-weight mes-
sage-centric communication model that significantly reduces
the “per-message” cost by fully exploiting modern high-
speed networks. At the same time, we propose a slimmed-
down vertex-centric computation model that not only signifi-
cantly accelerates the message generation but also reduces
the computation time. Based on the proposed new communi-
cation and computation models, we design and implement a
high-performance distributed graph-processing framework,
called BlitzG. Extensive prototype evaluation of BlitzG,
driven by real-world datasets, indicates that it runs up to 27x
(with an average of 20.7x) faster than GPS.

As future work, we plan to study the coding techniques
that can be employed by graph-processing systems to reduce
the overheads of the reliable transmission and fault tolerance.

ACKNOWLEDGMENTS

This work is supported by NSFC 61772216, 61672159,
61772212, 61832020 and U1705262. This work is also
supported by Project of National Key R&D Program of
China No. 2018YFB10033005, Shenzhen Technology Scheme
JCYJ20170307172248636, Technology Innovation Platform
Project of Fujian Province under Grant (No. 2014H2005),
Fujian Collaborative Innovation Center for Big Data App-
lication in Governments, Fujian Engineering Research
Center of Big Data Analysis and Processing, Hubei Province
Technical Innovation Special Project (2017AAA129).

REFERENCES

[1] T. Friedrich and A. Krohmer, “Cliques in hyperbolic random
graphs,” in Proc. IEEE Int. Conf. Comput. Commun., 2015, pp. 1544—
1552.

[2] X.Y.Li C. Zhang, T. Jung, J. Qian, and L. Chen, “Graph-based
privacy-preserving data publication,” in Proc. IEEE Int. Conf.
Comput. Commun., 2016, pp. 1-9.

[3] G. Malewicz, M. H. Austern, A.]J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale
graph processing,” in Proc. ACM SIGMOD Int. Conf. Manag. Data,
2010, pp. 135-146.

[4] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, “Distributed graphlab: A framework for machine
learning and data mining in the cloud,” Proc. VLDB Endowment,
vol. 5, no. 8, pp. 716-727,2012.

[5] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: Distributed graph-parallel computation on natural
graphs,” in Proc. Usenix Conf. Operating Syst. Des. Implementation,
2012, pp. 17-30.

[6] S. Salihoglu and J. Widom, “Gps: A graph processing system,”
in Proc. ACM Int. Conf. Sci. Statistical Database Manag., 2013,
Art. no. 22.

[7]
[8]

[9]
[10]

[11]

[12]
[13]

[14]

[15]
[16]

[171

[18]

[19]
[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]
[35]

[36]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.5, MAY 2019

S. Fortunato, “Community detection in graphs,” Physics Reports,
vol. 486, no. 3, pp. 75-174, 2010.

L. Page, “The pagerank citation ranking : Bringing order to the
web,” Stanford Digital Libraries Work. Paper, vol. 9, no. 1, pp. 1-14,
1999.

“Apache giraph.” (2014). [Online]. Available: http://giraph.
apache.org

A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale
graph computation on just a PC,” in Proc. Usenix Conf. Operating
Syst. Des. Implementation, 2012, pp. 31-46.

Y. Cheng, F. Wang, H. Jiang, Y. Hua, D. Feng, and X. Wang,
“DD-graph: A highly cost-effective distributed disk-based graph-
processing framework,” in Proc. ACM Symp. High-Perform. Parallel
Distrib. Comput., 2016, pp. 259-262.

Mellanox. (2015). [Online]. Available: http:/ /www.mellanox.com/
M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin, Y. Dai,
and L. Zhou, “Gram: Scaling graph computation to the trillions,”
in Proc. ACM Symp. Cloud Comput., 2015, pp. 408-421.

T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet
processing,” in Proc. 11th ACM/IEEE Symp. Architectures Netw.
Commun. Syst., 2015, pp. 5-16.

DPDK. (2013). [Online]. Available: http:/ /www.dpdk.org

J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High perfor-
mance and flexible networking using virtualization on commodity
platforms,” in Proc. Usenix Conf. Netw. Syst. Des. Implementation,
2014, pp. 445-458.

L. Rizzo, “Netmap: A novel framework for fast packet I/O,” in
Proc. USENIX Annu. Tech. Conf., 2012, pp. 101-112.

C. Dovrolis, B. Thayer, and P. Ramanathan, “HIP: Hybrid inter-
rupt-polling for the network interface,” ACM SIGOPS Operating
Syst. Rev., vol. 35, no. 4, pp. 50-60, 2001.

J. Yang, D. B. Minturn, and F. Hady, “When poll is better than
interrupt,” in Proc. Usenix Conf. File Storage Technol., 2012, pp. 3-3.
D. Scholz, “A look at intel’s dataplane development kit,” Netw.
Architectures Serv., vol. 8, pp. 115-122, 2014.

C. Zhou, J. Gao, B. Sun, and J. X. Yu, “MOCgraph: Scalable dis-
tributed graph processing using message online computing,”
Proc. VLDB Endowment, vol. 8, no. 4, pp. 377-388, 2014.

S. A. Athalye and T. Ji, “Method and apparatus for fragmenting a
control message in wireless communication system,” 2011.
MTCP. (2007). [Online]. Available: https://github.com/
eunyoungl4/mtcp

DPDK-NGINX. (2016). [Online]. Available: https://github.com/
ansyun/dpdk-nginx

Y. Wu, F. Wang, Y. Hua, D. Feng, Y. Hu, J. Liu, and W. Tong, “Fast
fcoe: An efficient and scale-up multi-core framework for fcoe-based
san storage systems,” in Proc. IEEE Int. Conf. Parallel Process., 2015,
pp- 330-339.

G. Karypis and V. Kumar, “Metis—unstructured graph partition-
ing and sparse matrix ordering system, version 2.0,” Citeseer, 1995.
K. Zhang, R. Chen, and H. Chen, “Numa-aware graph-structured
analytics,” in Proc. ACM SIGPLAN Symp. Principles Practice Parallel
Program., 2015, pp. 183-193.

L. Backstrom, H. Dan, J. Kleinberg, and X. Lan, “Group formation
in large social networks: membership, growth, and evolution,” in
Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2006, pp. 44-54.

The Laboratory for Web Algorithmics, [Online]. Available:
http:/ /law.di.unimi.it/datasets.php

Y. Lu, J. Cheng, D. Yan, and H. Wu, “Large-scale distributed
graph computing systems: An experimental evaluation,” Proc.
VLDB Endowment, vol. 8, no. 3, pp. 281-292, 2014.

L. Page, “The pagerank citation ranking : Bringing order to the
web,” Stanford Digital Libraries Work. Paper, vol. 9, no. 1, pp. 1-14,
1999.

X. Zhu and Z. Ghahramani, “Learning from labeled and unla-
beled data with label propagation,” Carnegie Mellon University,
Pittsburgh, PA, Tech. Rep. CMU-CALD-02-107, 2002.

Graphlab. (2012). [Online]. Available: http://graphlab.org

Mina. (2003). [Online]. Available: http://mina.apache.org/

M. Han, K. Daudjee, K. Ammar, X. Wang, and T. Jin, “An experi-
mental comparison of pregel-like graph processing systems,”
Proc. VLDB Endowment, vol. 7, no. 12, pp. 1047-1058, 2014.

A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel,
“Chaos: Scale-out graph processing from secondary storage,” in
Proc. Symp. Operating Syst. Principles, 2015, pp. 410-424.

http://giraph.apache.org
http://giraph.apache.org
http://www.mellanox.com/
http://www.dpdk.org
https://github.com/eunyoung14/mtcp
https://github.com/eunyoung14/mtcp
https://github.com/ansyun/dpdk-nginx
https://github.com/ansyun/dpdk-nginx
http://law.di.unimi.it/datasets.php
http://graphlab.org
http://mina.apache.org/

CHENG ETAL.: USING HIGH-BANDWIDTH NETWORKS EFFICIENTLY FOR FAST GRAPH COMPUTATION

[37] I T. Association et al., InfiniBand Architecture Specification: Release
1.0, Beaverton, OR, USA: InfiniBand Trade Association, 2000.

A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA
efficiently for key-value services,” ACM SIGCOMM Comput.
Commun. Rev., vol. 44, no. 4, pp. 295-306, 2014.

D. Yan, J. Cheng, Y. Lu, and W. Ng, “Effective techniques for mes-
sage reduction and load balancing in distributed graph
computation,” in Proc. 24th Int. Conf. World Wide Web, 2015,
pp- 1307-1317.

D. Yan, Y. Bu, Y. Tian, A. Deshpande et al., “Big graph analytics
platforms,” Foundations and Trends® in Databases, vol. 7, no. 1-2,
pp- 1-195, 2017.

DPDK-redis. (2016). [Online]. Available: https://github.com/
ansyun/dpdk-redis

J. G.Pak and K. H. Park, “A high-performance implementation of an
iot system using DPDK,” Appl. Sci., vol. 8, no. 4, pp. 550-566, 2018.

Y. Cheng, F. Wang, H. Jiang, Y. Hua, D. Feng, Y. Wu, T. Zhu, and
W. Guo, “A highly cost-effective task scheduling strategy for very
large graph computation,” Future Generation Comput. Syst., vol. 86,
no. 2018, pp. 1437-1455, 2018.

Y. Cheng, F. Wang, H. Jiang, Y. Hua, D. Feng, L. Zhang, and J. Zhou,
“A communication-reduced and computation-balanced framework
for fast graph computation,” Frontiers Comput. Sci., vol. 12, no. 5,
pp- 887-907,2018.

W. Guo, J. Li, G. Chen, Y. Niu, and Y. Chen Cheng, “A pso-
optimized real-time fault-tolerant task allocation algorithm in wire-
less sensor networks,” Frontiers Comput. Sci., vol. 26, no. 12,
pp- 3236-3249, 2015.

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

Yongli Cheng received the BE degree from
Chang’an University, Xi’an, China, in 1998, the MS
degree from FuZhou University, FuZhou, China,
in 2010, and the PhD degree from the Huazhong
University of Science and Technology, Wuhan,
China, 2017. He is a teacher of College of Mathe-
matics and Computer Science at FuZhou Univer-
sity currently. His current research interests
include computer architecture and graph com-
puting. He has several publications in major inter-
national conferences and journals, including
HPDC, IWQoS, INFOCOM, ICPPF, FGCS, ToN and FCS. He is a member
of the IEEE.

Hong Jiang received the BE degree from the
Huazhong University of Science and Technology,
Wouhan, China, in 1982, the MASc degree from
the University of Toronto, Canada, in 1987, and
the PhD degree from the Texas A&M University,
College Station, in 1991. He is Wendell H. Ned-
derman Endowed professor & chair of Depart-
ment of Computer Science and Engineering,
University of Texas at Arlington. His research
interests include computer architecture, com-
puter storage systems and parallel/distributed
computing. He serves as an associate editor of the IEEE Transactions
on Parallel and Distributed Systems. He has more than 200 publications
in major journals and international Conferences in these areas, including
the IEEE Transactions on Parallel and Distributed Systems, the IEEE
Computer Society, the ACM Transactions on Storage, the ACM Trans-
actions on Architecture and Code Optimization, the Journal of Parallel
and Distributed Computing, ISCA, MICRO, FAST, USENIX ATC, USE-
NIX LISA, SIGMETRICS, MIDDLEWARE, ICDCS, IPDPS, OOPLAS,
ECOORP, SC, ICS, HPDC, ICPP. He is a fellow of the IEEE.

1183

Fang Wang received the BE and master's
degrees in computer science and the PhD degree
in computer architecture from the Huazhong
University of Science and Technology (HUST),
China, in 1994, 1997, 2001. She is a professor of
computer science and engineering at HUST. Her
interests include distribute file systems, parallel I/
O storage systems and graph processing sys-
tems. She has more than 50 publications in major
journals and conferences, including the Future
Generation Computing Systems, the ACM Trans-
actions on Architecture and Code Optimization, HiPC, ICDCS, the High-
Pressure Die-Casting, ICPP. She is a member of the IEEE.

Yu Hua received the BE and PhD degrees in
computer science from Wuhan University, China,
in 2001 and 2005, respectively. He is currently a
professor with the Huazhong University of Science
and Technology, China. His research interests
include computer architecture, cloud computing
and network storage. He has more than 80 papers
to his credit in major journals and international
conferences including the /EEE Computer Soci-
ety, the IEEE Transactions on Parallel and Distrib-
uted Systems, USENIX ATC, USENIX FAST,
INFOCOM, SC, ICDCS, ICPP and MASCOTS. He has been on the orga-
nizing and program committees of multiple international conferences,
including INFOCOM, ICDCS, ICPR, RTSS and IWQoS. He is a senior
member of the IEEE, a member of ACM.

Dan Feng received the BE, ME, and PhD
degrees in computer science and technology,
in 1991, 1994, and 1997, respectively, from the
Huazhong University of Science and Technology
(HUST), China. She is a professor and dean of
the School of Computer Science and Technology,
HUST. Her research interests include computer
architecture, massive storage systems,
and parallel file systems. She has more than 100
: publications in major journals and international
conferences, including the IEEE Transactions on
Computers, the IEEE Transactions on Parallel and Distributed Systems,
the ACM Transactions on Storage, JCST, FAST, USENIX ATC, ICDCS,
HPDC, SC, ICS, IPDPS, and ICPP. She serves on the program commit-
tees of multiple international conferences, including SC 2011, 2013 and
MSST 2012. She is a member of the IEEE.

Wenzhong Guo received the BS and MS
degrees in computer science, and the PhD
degree in communication and information system
from Fuzhou University, Fuzhou, China, in 2000,
2008, and 2010, respectively. He is currently a full
professor with the College of Mathematics and
Computer Science at Fuzhou University. His
research interests include intelligent information
processing, sensor networks, network comput-
ing, and network performance evaluation. He is a
member of the IEEE.

Yunxiang Wu received the BE degree in com-
puter science and technology from the Wuhan
University of Science and Technology (WUST),
China, in 2009. He is currently working toward
the PhD degree majoring in computer archi-
tecture in Huazhong University of Science and
Technology, Wuhan, China. His current research
interests include computer architecture and
storage systems. He has several publications in
major journals and international conferences,
including the IEEE Transactions on Parallel and
Distributed Systems, the ACM Transactions on Architecture and Code
Optimization and ICPP.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

https://github.com/ansyun/dpdk-redis
https://github.com/ansyun/dpdk-redis

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

