IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.5, MAY 2018 985

A Write-Friendly and Cache-Optimized Hashing
Scheme for Non-Volatile Memory Systems

Pengfei Zuo, Student Member, IEEE and Yu Hua™, Senior Member, IEEE

Abstract—Non-volatile memory technologies (NVMs) are promising candidates for building future memory systems, due to their
advantages of high density, high scalability, and requiring near-zero standby power, while suffering from the limited endurance and
asymmetric properties of reads and writes, compared with traditional memory technologies including DRAM and SRAM. The significant
changes of low-level memory devices cause nontrivial challenges to high-level in-memory and in-cache data structure design due to
overlooking the NVM device properties. In this paper, we study an important and common data structure, hash table, which is
ubiquitous and widely used to construct the index and lookup table in main memory and caches. Based on the observations that
existing hashing schemes cause many extra writes to NVMs, we propose a cost-efficient write-friendly hashing scheme, called path
hashing, which incurs no extra writes to NVMs while delivers high performance. The basic idea of path hashing is to leverage a novel
hash-collision resolution method, i.e., position sharing, which meets the needs of insertion and deletion requests without extra writes to
NVMs. By further exploiting double-path hashing and path shortening techniques, path hashing delivers high performance of hash
tables in terms of space utilization and request latency. Nevertheless, the original path hashing has low utilization of each cache line for
small items, causing low cache efficiency. We hence propose a cache-optimized path hashing to pack multiple cells in the same path
together and store them into one cache line, thus improving the cache line utilization to obtain higher performance. We have
implemented path hashing and used a gemb5 full system simulator with NVMain to evaluate its performance in the context of NVMs.
Extensive experimental results demonstrate that path hashing incurs no extra writes to NVMs, and achieves up to 95 percent space
utilization ratio as well as low request latency, compared with existing state-of-the-art hashing schemes. We have released the source

code of path hashing for public use at github.

Index Terms—Non-volatile memory, hashing scheme, write endurance, collision resolution

1 INTRODUCTION

OVER the past few decades, traditional memory technol-
ogies including DRAM and SRAM, have been used as
the main memory and on-chip caches in the memory hierar-
chy, which however suffers from the increasing leakage
power dissipation and limited scalability [1], [2]. To address
this problem, non-volatile memory (NVM) technologies,
e.g., phase-change memory (PCM), resistive random access
memory (ReRAM), and spin-transfer torque RAM (STT-
RAM), are considered as promising candidates of next-gen-
eration memory [3], [4], due to their advantages of high den-
sity, high scalability, and requiring near-zero standby
power [5], [6], [7]. NVMs can be directly accessed through
the memory bus by using CPU load and store instructions
due to the byte-addressable property, avoiding the over-
head of block-based interfaces [2], [8], [9], [10], [11]. NVMs
however have the limitations in terms of write endurance
and performance. NVMs typically have limited write
endurance, e.g., 107 — 10® writes for PCM [12]. The writes

o The authors are with Wuhan National Laboratory for Optoelectronics,
School of Computer Science and Technology, Huazhong University of
Science and Technology, Wihan 430074, China.

E-mail: {pfzuo, csyhua)@hust.edu.cn.

Manuscript received 26 May 2017; revised 1 Nov. 2017; accepted 4 Dec. 2017.
Date of publication 11 Dec. 2017; date of current version 6 Apr. 2018.
(Corresponding author: Yu Hua.)

Recommended for acceptance by B. He.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2017.2782251

on NVMs not only consume the limited endurance, but also
cause higher latency and energy than reads [13].

With the significant changes of memory characteristics in
computer architecture, an important problem arises [2], [8],
[9], [10], [11], ie., how could in-memory and in-cache data
structures be modified to efficiently adapt to NVMs? This paper
focuses on the hashing-based data structures. The reason is
that hashing-based data structures are able to provide fast
query response with the constant-scale lookup time com-
plexity [14], which are much faster than tree-based data
structures with the average O(log(V)) lookup time complex-
ity where N is the size of data structures. Hence, hashing-
based data structures are ubiquitous and widely used to
construct the index and lookup table in main memory appli-
cations, such as main memory databases [15], [16], [17], [18],
[19] and key-value stores [20], [21], [22], e.g., Redis [23] and
Memcached [24]. As NVMs are expected to replace DRAM
as main memory on which these main memory applications
are built, it is important to design NVM-friendly hashing
schemes. Designing hashing schemes on traditional DRAM
memory mainly considers two performance parameters,
including space utilization and request latency [25]. Com-
pared with DRAM, one main challenge in designing NVM-
friendly hashing schemes is to cope with the limited write
endurance and intrinsic asymmetric properties of reads and
writes. NVM writes incur much higher latency G.e.,
3 — 8X [26]) and energy than reads, as well as harm the lim-
ited endurance. Hence, one important design goal of NVM-
friendly hashing schemes is to reduce NVM writes, while
delivering high performance.

1045-9219 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-7730-3796
https://orcid.org/0000-0001-7730-3796
mailto:

986 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.5, MAY 2018

Hash collisions are difficult to be fully avoided in hash-
ing-based data structures due to probabilistic property [27].
However, the methods for dealing with hash collisions in
traditional hashing techniques [25], [28], [29], [30], [31]
usually result in many extra writes, i.e., a single insertion
request to hash table writes multiple items in NVMs, which
are not friendly to the NVM write endurance. For example,
chained hashing [28] deals with hash collisions via storing
the conflicting items in the linked lists, which not only
writes the inserted items themselves but also modifies
the pointers of other items. Cuckoo hashing [25] deals with
hash collisions via evicting the items in the conflicting posi-
tions, causing many data movements.

In this paper, we present a write-friendly hashing
scheme, called path hashing [32], for NVMs to minimize the
writes while efficiently dealing with the hash collisions.
Path hashing leverages a novel solution, i.e., position shar-
ing, for dealing with hash collisions, which is not used in
any previous hashing schemes. Storage cells in the path
hashing are logically organized as an inverted complete
binary tree. The last level of the inverted binary tree, i.e., all
leaf nodes, is addressable by the hash functions. All nodes
in the remaining levels are non-addressable and considered
as the shared standby positions of the leaf nodes to deal
with hash collisions. When hash collisions occur in a leaf
node, the empty standby positions of the leaf node are used
to store the conflicting items. Thus insertion and deletion
requests in path hashing only need to probe the leaf node
and its standby positions for finding an empty position or
the target item, resulting in no extra writes. In summary,
the main contributions of this paper include:

e We investigate the influence of existing hashing
schemes on the writes to NVMs based on both
empirical analysis and experimental evaluation. Our
main insights include most of existing hashing
schemes usually result in many extra writes to
NVMs. It is necessary to improve existing hashing
schemes to efficiently adapt to NVMs.

e We propose a novel write-friendly hashing scheme,
i.e., path hashing, which leverages position sharing
technique to deal with hash collisions, allowing
insertion and deletion requests to incur no extra
NVM writes. By further exploiting double-path
hashing and path shortening techniques, path hash-
ing delivers high performance of hash tables in terms
of space utilization ratio and request latency.

e We propose a cache-optimized path hashing to
improve the cache line utilization of memory accesses
in path hashing. Cache-optimized path hashing
divides the binary tree into many subtrees and then
packs the cells in each subtree together and stores
them in the contiguous memory space. Hence, a single
memory access can prefetch multiple cells belonging
to the same path, which reduces the number of mem-
ory accesses to obtain higher performance.

e We have implemented path hashing and evaluated it
using the gemb full system simulator [33] with
NVMain [34]. Experimental results show that path
hashing incurs no extra writes to NVMs, and
achieves up to 95 percent space utilization ratio as

well as low request latency, compared with existing
state-of-the-art hashing schemes. We have released
the source code of path hashing at github [35].

The rest of this paper is organized as follows. Section 2
presents the background and motivation. Sections 3 and 4
respectively describe the design of path hashing and cache-
optimized path hashing. Section 5 presents the evaluation
methodology and results. Section 6 discusses the related
work and Section 7 concludes our paper.

2 BACKGROUND AND MOTIVATION

In this section, we introduce the background of non-volatile
memory technologies and existing hashing schemes. We
then analyze the influence of existing hashing schemes on
the number of NVM writes.

2.1 Non-Volatile Memory Technologies

Unlike traditional DRAM and SRAM using electric charges,
emerging non-volatile memory technologies, e.g.,, PCM,
ReRAM, and STT-RAM, use resistive memory to store infor-
mation, which have higher cell density and near-zero leakage
power. Hence, NVMs have been considered as promising
candidates of next-generation main memory and caches [5],
[6], [7]1. Moreover, since NVMs have lower read/write
latency and higher endurance than flash, some work [36],
[37], [38] considers using NVMs in the external storage to
replace/complement the flash-based SSDs or to store the
metadata in SSDs.

PCM exploits the resistance difference between amor-
phous and crystalline states in phase change materials to
store binary data, e.g., the high-resistance state represents
‘0", and the low-resistance state represents ‘1’. The cell of
ReRAM typically has the Metal-Insulator-Metal structure
which can be changed between a high-resistance state (rep-
resenting ‘0’) and a low-resistance state (representing ‘1’).
STT-RAM is a magnetic RAM which switches the memory
states using spin-transfer torque.

Although different materials and technologies are used
in these NVMs, some common limitations are shared. First,
they all have the intrinsic asymmetric properties of reads
and writes. Write latency is much higher than read latency
(i.e.,, 3 —8X) [5], [6], [26], and writes also consume higher
energy than reads. Second, NVMs generally have the lim-
ited write endurance, e.g., 107 — 10% writes for PCM [12].
Therefore, NVM systems are designed to reduce writes.

2.2 Existing Main Hashing Schemes

Hashing-based data structures have been widely used to
construct the index or lookup table in the main memory [15]
and caches [39], due to fast query response and constant-
scale addressing complexity. Hash collisions, i.e., two or
more keys being hashed to the same cell, are practically
unavoidable in hashing-based data structures. Typical
examples of existing hashing schemes to deal with hash col-
lisions are described as follows.

Chained hashing stores the conflicting items in a linked list
and links the list to the conflicting cell [28]. Chained hashing
is popular due to the simple data structure and algorithms.
However, when querying an item, the chained hashing
needs to scan the list that is linked with the cell. The

ZUO AND HUA: A WRITE-FRIENDLY AND CACHE-OPTIMIZED HASHING SCHEME FOR NON-VOLATILE MEMORY SYSTEMS

(a) Chained Hashing

(b) Linear Probing

987

01234567
| bl |c
O

Lo] [1] [2] [0 0

The probe sequence length (PSL)

(c) Robin Hood Hashing

X
hi(x) h2(x)

012 3 456 7

(d) 2-choice Hashing

Fig. 1. Existing main hashing schemes.

querying performance is poor when the linked lists are too
long. Moreover, the chained hashing also inherits the weak-
nesses of linked lists in heavy space overhead of pointers
when storing small keys and values.

Linear probing needs to probe the hash table for the closest
following empty cell when the hash computation results in
a collision in a cell. To search a key x, linear probing
searches the cell at index h(z) and the following cells,
h(z) + 1, h(x) +2,.. ., until observing either the cell with the
key x or an empty cell. Deleting an item in linear probing is
complicated, which needs to rehash/move multiple items
to fill the empty positions in the lookup sequence [30].

Robin Hood hashing [31] is an interesting extension of lin-
ear probing. The insertion operation in Robin Hood hashing
is different from linear probing. A new item can displace an
already inserted item, if its probe sequence length is larger
than that of the item at the current position. The probe
sequence length (PSL) is defined as the length of the probed
cell sequence when inserting or searching an item. The
insertion operation with displacements can reduce the
worst-case search time. The query and deletion operations
are the same as those of linear probing.

2-choice hashing uses two different hash functions A, (z) and
ha(x) to compute two positions for each item [28]. An inserted
item is stored in any one empty position between the two
positions. The insertion fails when both positions are occu-
pied. The query and deletion are simple, which only need to
probe two positions. However, the space utilization is usually
low due to only two positions used to deal with hash colli-
sions for an inserted item which are easily both occupied.

Cuckoo hashing uses d (d > 2) hash functions to compute d
positions for each item. The inserted item is stored in any
one empty position among the d positions. If all the d posi-
tions are occupied, cuckoo hashing randomly evicts the
item in one of d positions. The evicted item further searches
the empty position in its d positions. Cuckoo hashing has
higher space utilization than 2-choice hashing due to evic-
tions, and achieves constant lookup time, i.e., probing d
positions. However, the frequent evictions for inserting an
item usually result in high insertion latency and possible
endless loop [25], [40], [41]. In practice, d = 2 is most often
used due to sufficient flexibility when using only two hash
functions [20], [42].

X
th{)

012 3 456 7

& S ==

Evict

(e) Cuckoo Hashing

2.3 The Influence of Existing Hashing Schemes
on NVMs

Designing hashing schemes on traditional memory technol-
ogies, i.e., DRAM and SRAM, mainly considers two perfor-
mance parameters, including space utilization and request
latency [25]. When designing hashing schemes on NVMs,
the third important parameter, i.e., the number of NVM
writes, should be also considered due to the intrinsic asym-
metric properties and the limited write endurance of
NVMs. We analyze the influence of existing hashing
schemes on the number of NVM writes.

In the chained hashing, when inserting and deleting an
item in the linked list, besides changing the item itself, the
pointers of other items also need to change, which results in
extra writes to NVMs. For example, as shown in Fig. 1a,
when deleting the item d, the pointer of a should point to e.

In the linear probing, when removing an item, the follow-
ing multiple items move forward, which results in multiple
NVM writes. In Fig. 1b, a, d, and e have the same hashing
positions, i.e., h(a) = h(d) = h(e) = 1. When deleting item q,
d moves to the position 1 and e moves to the position 2.

In the Robin Hood hashing, inserting a new item may dis-
place multiple items, which results in multiple NVM writes.
For example, as shown in Fig. 1c, when inserting a new item
2 whose hash position is 1 into the hash table, Robin Hood
hashing probes the items in the position 1 and following
positions until finding an item b whose PSL is smaller than
that of 2. Robin Hood hashing displaces b with a and further
inserts b. Moreover, the deletion operation in the Robin
Hood hashing also needs to move multiple items, causing
multiple NVM wrrites, like linear probing.

2-choice hashing does not cause extra NVM writes, due to
only probing two locations for inserting/deleting an item as
shown in Fig. 1d.

In the cuckoo hashing, during inserting an item, multiple
items are evicted and rewritten to new positions. When the
hash table has a high load factor, e.g., > 50 percent, an inser-
tion usually causes tens of eviction operations, which results
in the corresponding number of NVM writes. As shown in
Fig. 1le, when inserting the item «, both hashing positions,
i.e., 1 and 4, are occupied. Cuckoo hashing randomly evicts
the item in one of the two positions, e.g., b. b further searches
its another hashing position, 7. If the position 7 is also

988 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.5, MAY 2018

TABLE 1
Comparisons of Different Hashing Schemes

Hashing Extra Load Cache
Schemes Writes Factor Utilization
Chained Hashing Yes High Low
Linear Probing Yes High High
Robin Hood Hashing Yes High High
2-choice Hashing No Low Low
Cuckoo Hashing Yes Medium Low
Path Hashing (PH) No High Low
Cache-optimized PH No High High

occupied, the data item in 7 will be evicted. The eviction
operations may be endless, called endless loop. If endless
loop occurs, the size of hash table needs to be extended and
all stored items are rehashed. We also evaluate these hashing
schemes in experimental evaluation in terms of the number
of NVM writes as shown in Section 5.2.1.

Table 1 shows a high-level comparison among existing
hashing schemes and path hashing in terms of extra NVM
writes, load factor and CPU cache utilization. In summary,
most existing hashing schemes incur extra writes which are
not friendly to the NVM write performance and endurance.
Even though not causing extra NVM writes, 2-choice hashing
has extremely low space utilization as evaluated in Section
5.2.2, since only two positions for an item are used to deal
with hash collisions. The space utilization (i.e., the achieved
maximum load factor) is a very important parameter espe-
cially in the context of space-limited NVM caches and main
memory. Hence, it is important for designing a hashing
scheme to minimize the NVM writes while ensuring the high
performance in terms of space utilization and request latency.

3 THE DESIGN OF PATH HASHING

In this section, we present the path hashing, which lever-
ages position sharing technique to deal with hash collisions
without extra NVM writes, and double-path hashing and
path shortening techniques to deliver high performance in
terms of space utilization and request latency.

Path hashing leverages position sharing to allocate several
standby cells for each addressable cell in the hash table to
deal with hash collisions. The addressable cells in the hash
table are addressable by the hash functions and the standby
cells are not addressable. When the hash collisions occur in
an addressable cell in the hash table, the conflicting items
can be stored in its standby cells. An insertion/deletion
request only needs to search an addressable cell in the hash
table and its standby cells for an empty position or the target
item, without extra writes. The standby cells of each address-
able cell in the hash table are shared by other addressable
cells, which prevents uneven hashing to produce lots of
empty standby cells, thus improving the space utilization.
An addressable cell and all its standby cells are likely to be
occupied, which results in insertion failure. Path hashing lev-
erages double-path hashing to compute two addressable cells
for each item by using two hash functions, which further
alleviates hash collisions and improves space utilization.
Moreover, a read request needs to probe multiple standby
cells in two paths to find the target item. Path shortening is
proposed to reduce the number of probed cells in a request.

Fig. 2. An illustration of path hashing architecture with L = 3.

We present the physical storage structure of path hashing in
Section 3.4, which allows that all nodes in a read path can be
accessed in parallel with the constant-scale time complexity.

3.1 Position Sharing

Path hashing leverages a novel collision-resolution scheme
to deal with hash collisions, i.e., position sharing. Storage
cells in the path hashing is logically organized as an
inverted complete binary tree. As shown in Fig. 2, the
binary tree has L + 1 levels ranging from the root level 0 to
the leaf level L. Only the leaf nodes in the level L can be
addressable by the hash functions, i.e., addressable cells. The
nodes in the remaining levels ranging from level 0 to level
L — 1 are the shared standby positions to deal with hash col-
lisions, i.e., standby cells. When an item is inserted into an
occupied leaf node /, path hashing searches for an empty
standby cell in the path-f. Path-¢ is defined as the path
descending from the occupied leaf node / to the root.

For example, as shown in Fig. 2, a new item z is hashed
in the position of the leaf node 2. If the leaf node 2 is occu-
pied, path hashing scans the path-2 from the leaf node 2 to
the root for an empty position. Path hashing leverages the
overlaps among different paths to share the standby posi-
tions in the level 0 to level L — 1. As shown in Fig. 2, each
node in the level 2 is shared by two leaf nodes to deal with
hash collisions. Each node in level 1 is shared by four leaf
nodes. The root node is shared by all leaf nodes.

Insertion and deletion requests in path hashing only
need to read the nodes in a path for finding an empty posi-
tion or the target item, which hence do not cause any extra
writes. The nodes in the levels from 0 to L — 1 are shared to
deal with hash collisions, which prevents uneven hashing
to produce lots of empty standby cells, thus improving the
space utilization.

3.2 Double-Path Hashing

Since a path in the binary tree only has L + 1 positions, the
use of one path can only deal with at most L hash collisions
in an addressable position. The hashing scheme using
one path fails when more than L + 1 items are hashed into
the same position. To address this problem, we propose the
double-path hashing which uses two hash functions for each
item in the path hashing. Different from 2-choice hashing
which seeks two cells for an item using two hash functions,
double-path hashing seeks two paths.

As shown in Fig. 3, a new item x has two hashing posi-
tions, i.e., 2 and 5, computed by two different hash func-
tions, hy(z) and hy(x). The item z is inserted into an empty
position between the leaf nodes 2 and 5. If both nodes are

ZUO AND HUA: A WRITE-FRIENDLY AND CACHE-OPTIMIZED HASHING SCHEME FOR NON-VOLATILE MEMORY SYSTEMS 989

X
ha(x) ha(x)

Level L
Level 2
Level 1

Level 0

Fig. 3. Anillustration of path hashing (L = 3) with two hash functions.

occupied, the path hashing simultaneously scans the path-2
and path-5 to find an empty position. It is important that
the two hash functions should be independent and not
related with each other.

To avoid the overlap of the two paths for a key, we keep
its first path (path-¢;) in the first half part of the path hash-
ing and its second path (path-/,) in the second half part, via
the following computation:

Zl = h1 (Z‘)%Qlﬁl

Zg == hQ(I)%QL_l + 2L_1 (1)

Based on the position sharing, double-path hashing can
further alleviate the hash collisions via providing more
available positions for conflicting items. Moreover, due to
the randomization of two independent hash functions, the
two paths for an inserted item have no empty position with
a low probability, which enables path hashing to maintain a
high space utilization, as evaluated in Section 5.2.2.

When there is no empty position in the corresponding
two paths for an inserted item, an insertion failure occurs.
In that case, the hash table should be resized. We create a
new hash table whose size is double of the old one, and
then iteratively rehash all key-value items in the old hash
table into the new one, like the resizing schemes in existing
work [43], [44], [45].

3.3 Path Shortening

For the path hashing with L + 1 levels, each query request
needs to probe two paths with L + 1 nodes. We observe that
the nodes in the bottom levels of the inverted binary tree
provide a few standby positions to deal with hash collisions,
while increasing the length of the read path. For example,
the level 0 only contains 1 position but adds by 1 in the
length of the read path, as shown in Fig. 4.

To reduce the length of the read path, we propose the
path shortening to reduce the number of read nodes in a read
path. Path shortening removes multiple levels in the bottom
of the inverted binary tree and only reserves several top

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
\\\\r“/”” \\\\\F‘(/”’
i i

Level L
Level 3
Level 2
Level 1

Level 0 !

Fig. 4. An illustration of path hashing (L = 4) with path shortening.

-
Level L-k

Level L Level L-1

Fig. 5. Physical storage structure of path hashing.

levels. For a query request which is hashed in the leaf ¢,
path hashing only reads the nodes in the reserved levels in
the path-¢, which reduces the length of the read path. As
shown in Fig. 4, the levels 0 and 1 are removed. The levels 2,
3, and 4, are reserved levels. When reading a path, e.g.,
path-4, we only read the nodes in the reserved levels 2, 3,
and 4 in the path. Removing the bottom levels reduces the
length of paths, which however reduces the number of posi-
tions to deal with hash collisions, thus decreasing the space
utilization of hash table. We investigate the influence of the
number of reserved levels on space utilization as shown in
Section 5.2.3, and observe that reserving a small part of lev-
els can also achieve a high space utilization in path hashing.

3.4 Physical Storage Structure

Even though storage cells in path hashing are logically orga-
nized as a binary tree, the physical storage structure of path
hashing does not require pointers. Unlike the traditional
binary tree built via pointers, the path hashing can be stored
in a flat-addressed one-dimensional structure, e.g., a one-
dimensional array. Fig. 5 shows the physical storage struc-
ture of the path hashing with L+ 1 levels and k+1
reserved levels (k < L). The leaf nodes in the level L are
stored in the first 2L positions in the one-dimensional struc-
ture. The level L — 1 is stored in the following 2/~! posi-
tions, and so on. The removed bottom levels by path
shortening do not need to be stored. In the storage structure,
given a leaf node /, it is easy to find all nodes of the path-£ in
the one-dimensional structure, as described in Algorithm 1.

Algorithm 1. Computing the Storage Locations of All
Nodes in Path-£

Input: The number of levels L + 1, the number of reserved
levels k£ + 1, and the leaf node ¢ (stored in the /-th position in
the one-dimensional structure);

Output: The storage locations of all nodes in path-¢: P[]

1: Pl0]=¢

2: for (i =1;i < k+1;i++) do
3 0= 1Y

4 P[Z] =/ 4 2L+1 _ 2L7i+1

5: return P[]

The flat-addressed storage structure allows all nodes in a
path to be read in parallel from NVMs since the node
accesses are independent to each other, which has the con-
stant-scale time complexity. The node access pattern of path
hashing is different from that of chained hashing in which
the nodes in a chain can only be sequentially accessed. For
example, as shown in Fig. 1, for a query request to position
2, the chained hashing first reads a and then obtains the
storage position of d according to the pointer stored in a.
The storage position of e can be only obtained by the pointer
stored in d. The structure of linked lists in the chained hash-
ing results in low access performance.

990 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.5, MAY 2018

3.5 Operations

For a path hashing with L +1 levels and k+ 1 reserved
levels (k< L), its physical storage structure is a one-
dimensional array with 2141 — 2% cells. Each cell stores a
< key, value, token >, where the token denotes whether the
cell is empty or not, e.g., ‘token == 0’ represents empty and
‘token == 1’ represents non-empty. Path hashing determines
whether a cell is empty by checking the value of its token.
We present the practical operations in path hashing includ-
ing insertion, query and deletion.

3.5.1 Insertion

For inserting a new item < Key, Value >, path hashing first
computes two locations, ¢; and ¢, by using two different
hash functions, k() and hs(), as shown in Algorithm 2. If an
empty cell exists in the leaf nodes ¢; and /; in the level L,
path hashing inserts the new item into the empty cell and
changes the token of the cell to ‘1. If both the two leaf nodes
are non-empty, path hashing further iteratively checks the
nodes of path-¢; and path-/; in the next level until finding
an empty cell. In Algorithm 2, Path-£(i) denotes the node of
path-¢ in the level i, whose storage location in the one-
dimensional array can be computed by Algorithm 1.

Algorithm 2. Insert(Key, Value)

1: 61 = hl(KEy)%2L71
2: 42 = }LQ(KEy)%2]’71 —+ 2L71
3:for(i=L;i > L—k—1,i——)do
4: if Path-¢,(i) '= NULL then
5 Insert < Key, Value > in Path-¢, (i)
6 Return TRUE
7. if Path-ly(i) '= NULL then
8
9
10:

Insert < Key, Value > in Path-£5(i)
Return TRUE
Return FALSE

3.5.2 Query

In the query operation, path hashing first computes its two
paths, path-/; and path-/,, based on the key of the queried
item. Path hashing then checks the nodes of two paths from
the level L to level L — k until finding the target item, as
shown in Algorithm 3. If the item can not be found in the
two paths, it means the item does not exist in the hash table.

Algorithm 3. Query(Key)

1: 41 = hy(Key)%25 !

2: fz = hg(Key)%ZL‘l + ol-1

3:for(i=L;i > L—k—1,i——)do

4: if Path-¢,(i) '= NULL && Path-{,(i).key == Key then
5: Return Path-{; (i).value
6
7
8

if Path-05(i) '= NULL && Path-l5(i).key == Key then
Return Path-£y(1).value
: Return NULL

3.5.3 Deletion

In the deletion operation, path hashing first queries the cell
storing the item to be deleted, and then deletes the item
from the cell by changing the token of the cell to ‘0’, as
shown in Algorithm 4.

3.6 Time Complexity Analysis

For a path hashing with L + 1 levels and & + 1 reserved lev-
els (k < L) that has a total of N = 251 — 2% storage cells,
we analyze the average access time complexity and the
worst-case access time complexity respectively.

Algorithm 4. Delete(Key)

1: 4y = hy(Key) %25

2: ly = hQ(KEy)%QIﬁl + oL-1

3:for(i=L;i > L—k—1,i——)do

4: if Path-¢, (i) '= NULL && Path-¢,(i).key == Key then
5 Delete the item in Path-{; (i)

6 Return TRUE

7. if Path-05(i) = NULL && Path-{s(i).key == Key then
8

9

0:

Delete the item in Path-£5(i)
Return TRUE

10: Return FALSE

Average Access Time Complexity. When searching, insert-
ing, or deleting a key-value item, path hashing traverses the
corresponding two paths for finding the item from the top
level to the bottom level. Hence, the access time is different
when the item is stored in different levels. For example,
when the item is stored in the level L, the access time is at
most 2 (memory accesses) due to traversing two cells in the
two paths; when the item is stored in the level L —1, the
access time is at most 4; when the item is stored in the level
L — 2, the access time is at most 6; and so on. Hence, for an
item stored in level i, the relationship between its access
time (7;) and its storage location (level) is obtained:

T, =2(L+1—1) (2)

Moreover, the probability that an item is stored in the
level i is proportional to the number of cells in the level :.
For example, the path hashing has a total of
N = 2541 —2L7F cells and the level L has 2 cells. Thus the
probability that an item is stored in the level L is % More-
over, it is easy to obtain that the probability (P(7)) that an
item is stored in the level 7 is,

2 2i

P(i) = N T oL+l _ oLk

3)
From Equations (2) and (3), we obtain the expectation of the

average access time (Er) for searching, inserting, or deleting
an item in the path hashing:

Er

Il
M-
fae|
s

4)

Il
-
~
h
+
:

I
=2

From Equation (4), we obtain the average access time com-
plexity is O(4) ~O(1), ie. the constant-level time
complexity.

Worst-Case Access Time Complexity. In the worst case for
searching, inserting, or deleting an item, path hashing needs

ZUO AND HUA: A WRITE-FRIENDLY AND CACHE-OPTIMIZED HASHING SCHEME FOR NON-VOLATILE MEMORY SYSTEMS 991

Level L

Level 3

Level 2

Level 1

Fig. 6. An illustration of cache-optimized path hashing with L = 4, k = 4
andm = 2.

to traverse all cells in the corresponding two paths. Path
hashing has k+ 1 levels and thus the two paths contain
2(k+ 1) cells where k is a constant. Hence, the worst-case
access time complexity is O(2(k + 1)), i.e., the constant-level
time complexity.

4 CACHE-OPTIMIZED PATH HASHING

In this section, we present the cache-optimized path hashing
which aims to organize the storage cells of path hashing in
the cache-optimized format.

Cache hierarchy is used in computer architectures to
bridge the speed gap between CPU and main memory. Due
to the high latency of main memory accesses, the CPU cache
efficiency is important to the performance of main memory
data structures [9], [46]. A cache is organized in cache lines.
A cache line is the basic transferring unit between the last
level cache and main memory, which is the same as a page in
the disk system. The typical size of a cache line is 64 bytes.
The CPU accesses a cache line that is available in the cache,
called a cache hit. Otherwise, the cache line has to be loaded
from main memory, called a cache miss, which is much more
expensive than a cache hit in terms of access latency.

Current key-value stores, e.g., memcached and MemC3,
are typically dominated by the small items whose sizes are
smaller than a cache-line size [20], [47]. Most existing hash-
ing schemes, such as chained hashing [28] and 2-choice
hashing [48], suffer from low cache efficiency due to the ran-
domization of hash functions and the low utilization of a
cache line for such small items. The original path hashing
also has the same problem. For example, in the original stor-
age structure of path hashing as shown in Fig. 5, when the
CPU accesses the leaf cell ‘0" with a small item, the follow-
ing leaf cell ‘1" or more cells are loaded to the cache due to
belonging to the same cache line. However, only the data in
leaf cell ‘0" is useful and the remaining leaf cells in the cache
line are not used, which causes a low cache line utilization.

To improve the cache efficiency, we propose a cache-opti-
mized path hashing to pack multiple cells in the same path
together and store them in one cache line. To achieve this
goal, cache-optimized path hashing divides the binary tree
into many subtrees with m levels and then packs the cells in
each subtree together and stores them in the contiguous mem-
ory space. Hence, a single memory access can prefetch multi-
ple nodes belonging to the same path, which reduces the
number of memory accesses to obtain higher performance.

To better present cache-optimized path hashing, we give
an illustration as shown in Fig. 6. This is a path hashing
with L = 4 in which k = 4 levels are reserved. We pack each
subtree with m = 2 levels together. Three cells in each sub-
tree are stored in the contiguous memory space and aligned
to CPU cache line. Thus a single memory access can always
load two nodes belonging to the same path which reduces

Three storage cells (each 21 bytes)
|

1-byte token

[Ti kv | KV | KV [Ti KV § KV | KV | weeees

T T
A subtree (64 bytes) A subtree (64 bytes)

Fig. 7. The physical storage structure of cache-optimized path hashing
with m = 2.

the number of memory accesses. For example, a query
request occurs in Path-4. When the leaf node 4 in Path-4
does not contain the target item, the node of Path-4 in Level
3 is accessed which produces a cache hit without being
loaded from main memory, since the node has been pre-
feched into caches when reading the leaf node 4. The physi-
cal storage structure is shown in Fig. 7. In a cache line, the
first one byte is the token in which three bits are used to indi-
cate whether the three cells are empty respectively. The
remaining 63 bytes are divided into three equal parts and
thus each cell can store up to 21-byte key-value items.

5 PERFORMANCE EVALUATION

In this section, we evaluate our proposed path hashing by
being compared with existing hashing schemes in terms of
the number of NVM writes, space utilization ratio, and
request latency. We also compare path hashing with cache-
optimized path hashing to show the benefits obtained from
the cache-optimized scheme.

5.1 Experimental Configurations

Since real NVM devices are not available for us yet, we
implement path hashing and existing hashing schemes in
the gem5 [33] full-system simulator with NVMain [34] to
evaluate their performance in the context of NVMs.
NVMain is a timing-accurate main memory simulator for
emerging non-volatile memory technologies. The configura-
tion parameters of the system are shown in Table 2. The sys-
tem has a three-level cache hierarchy. L1 cache is private
and L2 cache is shared. L3 cache is DRAM, whose capacity
is equally partitioned among all the cores [49]. The size of
all cache lines is 64 bytes. Without loss of generality, we
model PCM technologies [50] as the main memory to evalu-
ate path hashing that in fact can be also used in other
NVMs. The read latency of the PCM is 75 ns and the write
latency is 150 ns, like the configurations in [49], [51].

We compare path hashing with existing hashing schemes
described in Section 2.2, i.e., chained hashing, linear prob-
ing, Robin Hood hashing, 2-choice hashing, and cuckoo
hashing. We use three datasets including a random-number
dataset and two real-world datasets as follows.

e RandomNum. We generate the random integer data
ranging from 0-2?0 via a pseudo-random number
generator. We use the randomly generated numbers
as the keys of the items in hash tables. The randomly
generated integer is a commonly used dataset for
evaluating the performance of hashing schemes [25],
[42], [52].

e DocWord. The dataset consists of five text collections
in the form of bags-of-words [53], in which we
use the largest collection, PubMed abstracts, for eva-
luation. PubMed abstracts contains 8.2 million

992 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.5, MAY 2018

TABLE 2
Experimental Configurations

Processor and Cache

CPU 4 cores, X86-64 processor, 2 GHz
Private L1 cache 32 KB, 2-way, LRU, 2-cycle latency
Shared L2 cache 4 MB, 8-way, LRU, 20-cycle latency
Shared L3 cache 32 MB, 8-way, LRU, 50-cycle latency
Memory Controller FCFRFS

Main Memory using PCM
Capacity 16 GB
Read latency 75 ns
Write latency 150 ns

documents and about 730 million words in total. We
use the combinations of document IDs and word IDs
as the keys of the items in hash tables.

e Fingerprint. The dataset is extracted from MacOS [54],
[55] which contains the daily snapshots of a Mac OS
X server running in an academic computer lab col-
lected by File system and Storage Lab at Stony Brook
University. We use the MD5 fingerprints of data
chunks in MacOS as the keys of the items in hash
tables.

5.2 The Comparisons Among Path Hashing and
Existing Hashing Schemes

52.1 NVM Writes

Only insertion and deletion requests cause the writes to
NVMs. We first insert n items into a hash table and then
delete 0.5n items from this hash table, using the five hashing
schemes respectively. We use the hash tables with 2% cells
for random-number dataset, with 22* cells for DocWord
dataset, and with 2% cells for Fingerprint dataset. Load fac-
tor in hash table is defined as the ratio of the number of the
inserted items to the total number of cells in hash table [25].
We evaluate the performance under two load factors, i.e.,
0.6 and 0.8. The higher load factor naturally produces
higher hash collision ratio. For 2-choice hashing and cuckoo
hashing with a high load factor, many items fail to be
inserted into the hash table due to their low space utiliza-
tions. We store these insertion-failure items in an extra
stash, like ChunkStash [56], and continue to insert other
items. The total number of modified items is normalized to
the total number of requests (i.e., 1.5n), as shown in Fig. 8.

As shown in Fig. 8, chained hashing, linear probing,
Robin Hood hashing, and cuckoo hashing modify extra
items which naturally incur more writes to NVMs. Higher
load factor results in more extra modified items. Among
these hashing schemes, cuckoo hashing needs to modify
most items, due to frequently evicting and rewriting items
during insertion. Linear probing moves many items to deal
with deletion requests especially when the hash table is in a
relatively high load factor, i.e., 0.8. Robin Hood hashing
incurs more writes than linear probing since both its inser-
tion and deletion requests need to move items. Chained
hashing needs to modify the pointers of other items when
inserting and deleting an item in the linked lists. To execute
a deletion/insertion request, path hashing and 2-choice
hashing only write the deleted /inserted item without modi-
fying extra items, which are write-friendly for NVMs.

6.5
» 3.5 ;
g 3.0} | A chained R Linear
= 25l E=gRobin B 2-choice _
B3 EH cuckoo [l Path :
=20 E
E ;
S 1.5 i
1.0 UINE e
we En Bl
0.0 H

LF-0.6

,_
n
=
o
-
n
=
o

(<)
HH)

LF-0.6 L
(c) Fingerprint

-0.8

Fig. 8. The normalized number of modified items. (“LF-0.6” and “LF-0.8”
mean the load factor (LF) is 0.6 and 0.8 respectively.)

We also evaluate the average number of the written cache
lines to NVM s for each request, as shown in Fig. 9. The aver-
age number of written cache lines is approximatively pro-
portional to the average number of modified items in each
scheme. The average number of written cache lines in the
DocWord dataset is much larger than those of the Random-
Num and Fingerprint datasets due to the larger item size.

5.22 Space Utilization

Space utilization ratio is defined as the load factor of hash
tables when insertion failure occurs. Higher space utiliza-
tion ratio means that more items can be stored in a given-
size hash table, which is a significant parameter in the con-
text of main memory and the caches with limited space. For
chained hashing, a half of memory is used for hash table
positions, and a half for list positions [25]. If the chained
hashing runs out of list positions, the insertion failure
occurs. For cuckoo hashing and 2-choice hashing, we
respectively allocate a stash with the 1 percent size of hash
table, which is not large. Otherwise, linearly searching the
items stored in the stash results in high latency. For cuckoo
hashing, when the number of evictions for an item achieves
100 [52], we store the item into the stash. For 2-choice hash-
ing, when both the two positions of an item are occupied,
we store the items in the stash. When the space of the stash
runs out, the insertion failure occurs. For path hashing,
when all nodes in the two paths for an item are occupied,

ZUO AND HUA: A WRITE-FRIENDLY AND CACHE-OPTIMIZED HASHING SCHEME FOR NON-VOLATILE MEMORY SYSTEMS 993

7.3

N

Chained Linear
E=Robin B 2-choice
|| EH Cuckoo [l Path

w

-

No. of Written Lines
N

o

(a) RandomNum

- PZ Chained Linear

- Robin 2-choice
- Cuckoo Path

No. of Written Lines
O_2NWAUION®WOO

LF-0.6
(b) DocWord

LF-0.8

5
® P2 chained Linear
5 4 | ERobin 2-choice
p EH cuckoo [l Path
g 3 T
E
=90l
=
o]
c1HUNEIEHE
z

0

(c) Fingerprint

Fig. 9. The average number of written cache lines for each request.

the insertion failure occurs. Their space utilization ratios are
shown in Fig. 10.

As shown in Fig. 10, 2-choice hashing has extremely low
space utilization ratio since only two positions for an item
are used to deal with hash collisions, which are easily occu-
pied by other items. Cuckoo hashing obtains higher space
utilization ratio than 2-choice hashing, due to further evict-
ing one of items in the occupied positions when both posi-
tions of an item are occupied. Linear probing and Robin
Hood hashing are not shown in the figure, since they do not
have a fixed space utilization ratio. Their load factors can be
up to 1, while the query performance is close to that of the
linear list. Chained hashing has a high space utilization ratio
since the conflicting items can always link with the lists
until running out of list positions. The space utilization ratio
of our proposed path hashing achieves about 95 percent in

E Chained B Linear [Cuckoo [l Path

100%

c

S 80%

5

= 60%

=)

8 40%! -

2

B 20%-
0%

RandomNum DocWord

Fingerprint

Fig. 10. Space utilization ratios of hashing schemes.

100%
90% |
80% [
70% E
60% [
50% F
40% |
30% b——r— ' '

3 5 7 9 11 13 15 17 19 21 23 25
The Number of Reserved Levels

—A-RandomNum (L = 22)
=3¢DocWord (L = 23)
-e--Fingerprint (L = 24)

Space Utilization Ratio

Fig. 11. The number of reserved levels versus space utilization ratio.

the three datasets, which is more than that of chained hash-
ing, due to efficiently dealing with hash collisions via posi-
tion sharing and double-path hashing.

5.2.3 The Number of Reserved Levels versus Space
Utilization

As described in Section 3.3, we remove multiple levels in
the bottom of path hashing to reduce the length of the read
path. However, removing the bottom levels also reduces the
number of positions to deal with hash collisions, thus reduc-
ing the space utilization ratio. We hence investigate the rela-
tionship between the number of the reserved levels and
space utilization ratio of path hashing.

As shown in Fig. 11, we observe that reserving a small
part of levels can also achieve a high space utilization ratio
in path hashing. For example, reserving 9 levels achieves
over 92 percent space utilization ratio for a binary tree with
25 levels in the Fingerprint dataset. Reserving 11 levels can
achieve the space utilization ratio close to that of a full
binary tree.

5.2.4 Insertion Latency

We insert the same number of items in the five kinds of hash
tables and store the insertion-failure items in the stashes for
2-choice hashing and cuckoo hashing. We compare the
average insertion latency of different hashing schemes, as
shown in Fig. 12. Cuckoo hashing has the highest insertion
latency, due to frequently evicting and rewriting items. Its
insertion latency dramatically increases with increasing the
load factor from 0.6 to 0.8, since the higher hash collision
ratio causes much more evictions. Robin Hood hashing also
displaces and rewrites multiple items during insertions
which results in high insertion latency. Chained hashing
incurs high insertion latency due to modifying extra items
during insertion. 2-choice hashing has the lowest insertion
latency due to only probing two positions for each insertion.
Path hashing and linear hashing have the low latency close
to 2-choice hashing, due to only probing empty positions
for insertion.

5.2.5 Deletion Latency

We compare the average deletion latency of different hash-
ing schemes, as shown in Fig. 13. We observe that linear
probing has the highest deletion latency due to moving
multiple items when deleting an item, which dramatically
increases with the growing load factor of hash tables. Robin
Hood hashing has much lower deletion latency than linear
probing even though also needing to move items during
deletions. It is because Robin Hood hashing reduces the

994 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,

6.4

SN

Chained Linear
E=Robin & 2-choice
EH Cuckoo [l Path

w
T

—_

Insertion Latency (us)
N

o

(a) RandomNum

Chained Linear
Robin 2-choice
Cuckoo Path

T

Insertion Latency (us)
o =~ N W 0O

(b) DocWord

IN
®
&

Chained Linear
EJRobin &Y 2-choice
FEFH| Cuckoo [l Path

w
T

N

Insertion Latency (us)
N

o

(c) Fingerprint

Fig. 12. Average latency of inserting an item.

average probe sequence length of each item during inser-
tions, which results in less items to be moved during dele-
tions. Chained hashing incurs high deletion latency due to
traversing the linked lists and modifying other items. 2-
choice hashing and cuckoo hashing have the low deletion
latency due to only probing two positions. Path hashing has
the slightly higher latency than 2-choice hashing due to
probing multiple positions in several levels. Note that for
cuckoo hashing and 2-choice hashing, we do not evaluate
their delete/query latency to the stash due to only focusing
on the delete/query latency to hash table.

5.2.6 Query Latency

Cuckoo hashing and 2-choice hashing require two memory
accesses for querying an item. The two memory accesses are
independent and can be executed in parallel. To evaluate
their parallel query performance, i.e., P-Cuckoo and P-2-
choice, we only evaluate the second hash query after the
first hash query fails, like the method in [25]. For path hash-
ing, the node accesses in the read paths are also indepen-
dent and can be executed in parallel as descried in Section
3.4. We also evaluate the parallel query performance of path
hashing, i.e., P-Path.

We compare the average query latency of different
hashing schemes, as shown in Fig. 14. We observe that
chained hashing causes the highest query latency, due to
serially accessing the long linked lists which results in

VOL.29, NO.5, MAY 2018

~25

\(?D, V7] Chained R Linear

=~ 2.0 E5YRobin &Y 2-choice
EH Cuckoo [l Path

(a) RandomNum

25 33
' Chained R Linear
220+ = Robin -choice | PN
? : EH Cuckoo [l Path
£15
®©
4
1.0
Ke]
Sos5t NEREHE
[a)]
0.0 i
LF-0.6 LF-0.8
(b) DocWord
~25
g V] Chained R Linear
2.0H] = Robin 2-choice | N .|
&< HEHH Cuckoo Path

(c) Fingerprint

Fig. 13. Average latency of deleting an item.

multiple random memory accesses. Comparing the results
of the load factors 0.6 and 0.8, higher load factor results in
longer linked lists in chained hashing, thus causing higher
query latency. Linear probing has high query latency due
to scanning the successive table cells, which increases with
the growing of the load factor. Robin Hood hashing has
lower query latency than linear probing due to reducing
the average probe sequence length of each item during
insertions. We observe that P-Cuckoo and P-2-choice have
the lowest query latency due to the constant-scale time
complexity when executed in parallel. Path hashing with-
out parallelism has the higher query latency than cuckoo
hashing due to probing multiple nodes in the read paths,
while being still lower than those of linear probing,
chained hashing, and Robin Hood hashing. Parallel path
hashing (P-Path) has the approximate query latency as P-
Cuckoo and P-2-choice.

5.3 The Comparisons between Path Hashing and
Cache-Optimized Path Hashing

In this section, we compare the original path hashing and
cache-optimized path hashing in terms of request latency.
In the evaluation, we use the RandomNum dataset. Each
key-value item is 21 bytes in which the key is 10-byte
random integer and the value is 11 bytes. Thus cache-
optimized path hashing packs each subtree with 2 levels
together as the illustration described in Section 4 and Fig. 6.
The top level of the hash table used in the evaluation has 22!
cells (L =21). We also investigate the influence of the

ZUO AND HUA: A WRITE-FRIENDLY AND CACHE-OPTIMIZED HASHING SCHEME FOR NON-VOLATILE MEMORY SYSTEMS 995

LF-0.6
(b) DocWord

R Linear
R P-2-choice

(c) Fingerprint

Fig. 14. Average latency of querying an item.

number of the reserved levels on the latency of different
kinds of requests.

5.3.1 Query Latency

To show the benefits of cache-optimized scheme, we evalu-
ate the performance of both positive and negative queries.
For a query, if the target item is found in the hash table, the
query is positive. Otherwise, it is negative. For a positive
query, path hashing probes the two pathes from the top
level to bottom level and stops the probing once finding the
target item. For a negative query, path hashing has to go
through the two paths before finding the target item not
existing in the hash table. The latency of negative query
indicates the worst-case search time in path hashing. We
first insert items in the hash tables until reaching the maxi-
mal load factor, and then respectively perform 1 million
positive queries and 1 million negative queries to evaluate
the average latency of each query. We also evaluate the
query latency when reserving the different numbers of lev-
els in path hashing. The results are shown in Figs. 15 and 16.

Fig. 15 shows the average latency of negative query. We
observe that cache-optimized path hashing reduces the
query latency by 43-49 percent compared with the original
path hashing. The reason is that cache-optimized path hash-
ing packs two cells in the same path into a cache line. When
the first cell is loaded into cache, the second cell is pre-
fetched, which reduces half of memory accesses. We also
observe that the average latency of negative query increases
with the increase of the number of reserved levels for path
hashing. It is because negative query needs to probe all cells

-©-Original
=A-Cache-optimized

Negative Query Latency (us)

The Number of Reserved levels

Fig. 15. The average latency of negative query. (“Original” indicates the
original path hashing without the cache-optimized scheme. “Cache-opti-
mized” indicates the cache-optimized path hashing.)

in the two paths whose lengths are increased when increas-
ing the number of reserved levels.

Fig. 16 shows the average latency of positive query. We
observe that cache-optimized path hashing reduces the
query latency by about 23 percent compared with the origi-
nal path hashing. There are two differences between the
experimental results of positive query and negative query.

First, cache-optimized scheme reduces about 23 percent
positive query latency while reducing near 50 percent nega-
tive query latency. The reason is that cache-optimized
scheme reduces the latency only when the target item exists
in the second-level cell in a subtree with 2 levels for a posi-
tive query. In this case, to find the target item, cache-
optimized path hashing loads only one cache line while the
original path hashing needs to load two cache lines. For a
negative query, both the original and cache-optimized path
hashing need to access the two cells in the same subtree.
Thus the cache-optimized path hashing always reduces
half of memory accesses for a negative query.

Second, the negative query latency increases with the
increase of the number of reserved levels, while the positive
query latency does not change. We have presented the reason
for the negative query above. We below analyze the reason
why the positive query latency does not change. In the path
hashing, most of storage cells are located in the upper levels.
For example, the total number of storage cells in the top 5-8
levels is only 6.25 percent of that in the top 1-4 levels, as
shown in Table 3. Thus for one million queried items in the
positive query test, most of them can be found in the upper
levels and only a few items are in the bottom levels. Hence,
the average latency of positive query is nearly identical when
path hashing has the different numbers of reserved levels.

5.3.2 Insertion Latency

To compare their insertion latency, we insert key-value items
into the path hash tables with the different number of

— 0.6
m F
3 b
o [PN PN o
c 05 G- O A4
3 I
8 [
gost A A A A
g r
g [
[L
£ 03 |
8 b -©-Original -A-Cache-optimized
02 L
4 8 12 16

The Number of Reserved levels

Fig. 16. The average latency of positive query.

996 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.5, MAY 2018

TABLE 3
The Number of Storage Cells in a Path Hash Table with L = 21

Levels in path The total number

P t
hashing of storage cells ercentage
The top 1-4 levels 3,932,160 100%
The top 5-8 levels 245,760 6.25%
The top 9-12 levels 15,360 0.39%
The top 13-16 levels 960 0.0244%

reserved levels until reaching their maximum load factors.
The number of inserted items and maximum load factor are
shown in Table 4. The average insertion latency is shown in
Fig. 17. We can observe that cache-optimized path hashing
reduces the insertion latency by about 20 percent compared
with the original path hashing. The reason is that when
accessing a cell in a path, cache-optimized path hashing pre-
fecthes the next cell in the same path. When the first cell is not
empty, cache-optimized path hashing accesses the next cell
without being loaded from main memory, thus reducing the
insertion latency. With the increase of the number of reserved
levels, the average insertion query does not significantly
increase, since most of items are inserted in the upper levels.

5.3.3 Deletion Latency

To compare their deletion latency, we first insert key-value
items into the path hash tables until reaching their maxi-
mum load factors. We then remove one million items exist-
ing in the hash tables. The average deletion latency is
shown in Fig. 18. We can observe that cache-optimized path
hashing reduces the deletion latency by about 23 percent
compared with the original path hashing. The deletion
latency is nearly identical to the positive query latency
shown in Fig. 16, since the deletion operation is similar to
the query operation, which first queries the location of the
cell storing the target item and then removes the item by set-
ting the token of the cell to ‘0.

6 RELATED WORK

As emerging NVMs become promising to play an important
role in the memory hierarchy, e.g., main memory and
caches. The changes of the memory characteristics bring the
challenges to the in-memory or in-cache data structure
design. In order to efficiently adapt to the new memory
characteristics and support hardware-software co-design in
memory systems, data structures have been improved to
enhance the endurance and performance of NVM systems.
Existing work has mainly focused on the tree-based data
structures stored in NVMs. Chen et al. [8] propose
unsorted-node schemes to improve B'-tree algorithm for

TABLE 4
The Number of Inserted ltems in a Path Hash Table with L = 21
Path hashing No. of . No. qf Max. load
storage cells inserted items factor
Reserved 4 levels 3,932,160 2,764,308 0.703
Reserved 8 levels 4,177,920 3,856,220 0.923
Reserved 12 levels 4,193,280 3,971,036 0.947
Reserved 16 levels 4,194,240 3,988,722 0.951

14 [
12 O/e/e———(-)
1 F A A —A

o
Y
T

Insertion Latency (us)

-©-0riginal -A-Cache-optimized

o
)
T

L L L

4 8 12 16
The Number of Reserved levels

I
'S

Fig. 17. The average insertion latency.

PCM. They show that the use of unsorted nodes, instead of
sorted nodes in B'-tree, can reduce PCM writes. Chi
et al. [10] observe that using unsorted nodes in B*-tree suf-
fers from several problems, e.g., CPU-costly for insertion
and wasting space for deletion. They further improve
Bt-tree algorithm for NVMs via three techniques including
the sub-balanced unsorted node, overflow node, and merg-
ing factor schemes. CDDS B-Tree [2] and NV-Tree [9] aim to
reduce the consistency cost of B-tree when maintained in
NVMs. Chen et al. [11] propose wB*-tree to minimize the
movement of index entries from insertion and deletion
requests by achieving write atomicity, thus reducing the
extra NVM writes. Oukid et al. [57] consider B*-tree in a
hybrid NVM-DRAM main memory and propose the FP-
tree, in which the leaf nodes of Bf-tree are persisted in
NVM while the inner nodes are stored in DRAM to deliver
high performance. Lee et al. [58] focus on the radix tree data
structure and analyze the limitations of the radix tree for
NVMs. They then propose the WORT (Write Optimal Radix
Tree) to eliminate the duplicate-copy writes for logging or
copy-on-write in the radix tree.

Hashing-based data structures are also popular and
widely used to construct the index and lookup table in
main memory (e.g., main memory databases) [15], [24],
[42] and caches [39], [59]. Debnath et al. [60] propose a
PCM-friendly cuckoo hashing variant called PFHB which
modifies cuckoo hashing to allow the eviction operations
at most once and uses an extra stash to store the insertion-
failure items. PFHB reduces the writes of cuckoo hashing
to PCM at the expense of significantly reducing the
lookup performance. Our work investigates the influence
of hashing-based data structures on the writes to NVMs,
and proposes a write-friendly hashing scheme, path hash-
ing, which allows insertion and deletion requests of hash
table do not cause any extra writes to NVMs while deliv-
ers high performance in terms of space utilization and
request latency.

06 [
3 G, © © ©
0.5
g
C
i)
304 A A A A
S
g o3 |
e -©-Original -A-Cache-optimized
0.2 L 1 L
4 8 12 16

The Number of Reserved levels

Fig. 18. The average deletion latency.

ZUO AND HUA: A WRITE-FRIENDLY AND CACHE-OPTIMIZED HASHING SCHEME FOR NON-VOLATILE MEMORY SYSTEMS

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a cost-efficient write-friendly
hashing scheme, called path hashing, for NVMs to mini-
mize the NVM writes while maintaining high performance
of hash tables. Path hashing leverages position sharing tech-
nique to deal with hash collisions without extra NVM
writes, and double-path hashing and path shortening tech-
niques to deliver high performance in terms of space utiliza-
tion and request latency. To improve the cache efficiency of
path hashing, we propose a cache-optimized path hashing
to pack multiple cells in the same path together and store
them into one cache line, which reduces the number of
memory accesses to obtain higher performance. We have
implemented path hashing and evaluated it in gem5 with
NVMain using a random-number dataset and two real-
world datasets. Extensive experimental results show that
path hashing incurs no extra NVM writes, and achieves up
to 95 percent space utilization ratio as well as low request
latency, compared with existing state-of-the-art hashing
schemes.

With the non-volatility property, NVMs are expected to
persist data structures as persistent memory for instanta-
neous failure recovery. In that case, it is essential to guaran-
tee the consistency of data structures on persistent memory.
Our future work will consider to design persistent hashing-
based data structures for persistent memory.

ACKNOWLEDGEMENTS

This work is supported by National Key Research and Devel-
opment Program of China under Grant 2016YFB1000202,
National Natural Science Foundation of China (NSFC) under
Grant No. 61772212 and State Key Laboratory of Computer
Architecture under Grant No.CARCH201505. The prelimi-
nary version appears in the Proceedings of the 33rd Inter-
national Conference on Massive Storage Systems and
Technology (MSST), 2017.

REFERENCES

[1] Y. Xie, “Modeling, architecture, and applications for emerging
memory technologies,” IEEE Des. Test Comput., vol. 28, no. 1,
pp. 44-51, Jan./Feb. 2011.

[2] S. Venkataraman, et al., “Consistent and durable data structures
for non-Volatile byte-addressable memory,” in Proc. 9th USENIX
Conf. File Stroage Technol., 2011, pp. 5-5.

[3] S.Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A proc-
essing-in-memory architecture for bulk bitwise operations in
emerging non-volatile memories,” in Proc. 53nd ACM/EDAC/IEEE
Des. Autom. Conf., 2016, pp. 1-6.

[4]]. Xu and S. Swanson, “NOVA: A log-structured file system for
hybrid volatile/non-volatile main memories,” in Proc. 14th USE-
NIX Conf. File Storage Technol., 2016, pp. 323-338.

[5] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan,
L. Lastras, and B. Abali, “Enhancing lifetime and security of pcm-
based main memory with start-gap wear leveling,” in Proc. 42nd
Annu. IEEE/ACM Int. Symp. Microarchitecture, 2009, pp. 14-23.

[6] J.]J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices
for computing,” Nature Nanotechnology, vol. 8, no. 1, pp. 13-24,
2013.

[71 M. K. Qureshi, V. Srinivasan, and]. A. Rivers, “Scalable high per-
formance main memory system using phase-change memo
technology,” in Proc. 36th Annu. Int. Symp. Comput. Archit., 2009,
pPp- 24-33.

[8] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking database algo-
rithms for phase change memory,” in Proc. 5th Biennial Conf. Inno-
vative Data Syst. Res., 2011, pp. 21-31.

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

997

J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “NV-
tree: Reducing consistency cost for NVM-based single level sys-
tems,” in Proc. 13th USENIX Conf. File Storage Technol., 2015,
pp- 167-181.

P.Chi, W.C. Lee, and Y. Xie, “Adapting B+-tree for emerging nov-
volatile memory based main memory,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 35, no. 9, pp. 1461-1474, Sep. 2016.

S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main mem-
ory,” Proc. VLDB Endowment, vol. 8, no. 7, pp. 786-797, 2015.

P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy
efficient main memory using phase change memory technology,”
in Proc. 36th Annu. Int. Symp. Comput. Archit., 2009, pp. 14-23.

S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ECP, not
ECC, for hard failures in resistive memories,” in Proc. 37th Annu.
Int. Symp. Comput. Archit., 2010, pp. 141-152.

W. D. Maurer and T. G. Lewis, “Hash table methods,” ACM Com-
put. Surveys, vol. 7, no. 1, pp. 5-19, 1975.

H. Garcia-Molina and K. Salem, “Main memory database systems:
An overview,” IEEE Trans. Knowl. Data Eng., vol. 4, no. 6, pp. 509—
516, Dec. 1992.

O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and
P. Ranganathan, “Meet the walkers: Accelerating index traversals
for in-memory databases,” in Proc. 46th Annu. IEEEJACM Int.
Symp. Microarchitecture, 2013, pp. 468-479.

H. Lim, M. Kaminsky, and D. G. Andersen, “Cicada: Dependably
fast multi-core in-memory transactions,” in Proc. ACM Int. Conf.
Manage. Data, 2017, pp. 21-35.

X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker,
“Staring into the abyss: An evaluation of concurrency control
with one thousand cores,” Proc. VLDB Endowment, vol. 8, no. 3,
pp- 209-220, 2014.

D.]. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker,
and D. A. Wood, “Implementation Techniques for Main Memory
Database Systems,” in Proc. ACM SIGMOD, 1984, pp. 1-8.

B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact
and concurrent MemCache with dumber caching and smarter
hashing,” in Proc. 10th USENIX Conf. Netw. Syst. Des. Implementa-
tion, 2013, pp. 371-384.

S. Li, et al., “Architecting to achieve a billion requests per second
throughput on a single key-value store server platform,” in Proc.
42nd Annu. Int. Symp. Comput. Archit., 2015, pp. 476-488.

K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang,
“Mega-KV: A case for GPUs to maximize the throughput of in-
memory key-value stores,” Proc. VLDB Endowment, vol. 8, no. 11,
pp- 1226-1237, 2015.

Redis. (2017). [Online]. Available: https:/ /redis.io/

Memcached. (2017). [Online]. Available: https://memcached.org/
R. Pagh and F. F. Rodler, “Cuckoo hashing,” J. Algorithms, vol. 51,
no. 2, pp. 122-144, 2004.

J. Yue and Y. Zhu, “Accelerating write by exploiting PCM
asymmetries,” Proc. IEEE 19th Int. Symp. High Performance Comput.
Archit., 2013, pp. 282-293.

M. Ajtai, “The complexity of the pigeonhole principle,” in Proc.
29th IEEE Annu. Symp. Found. Comput., 1988, pp. 346-355.

J. L. Carter and M. N. Wegman, “Universal classes of hash
functions,”]. Comput. Syst. Sci., vol. 18, no. 2, pp. 143154, 1979.
M. Patrascu and M. Thorup, “On the k-independence required by
linear probing and minwise independence,” ACM Trans. Algo-
rithms, vol. 12, no. 1, pp. 715-726, 2016.

B. Pittel, “Linear probing: The probable largest search time grows
logarithmically with the number of records,” |. Algorithms, vol. 8,
no. 2, pp. 236-249, 1987.

P. Celis, “Robin hood hashing,” PhD thesis, University Waterloo,
Waterloo, ON, Canada, 1986.

P. Zuo and Y. Hua, “A write-friendly hashing scheme for non-
volatile memory systems,” in Proc. IEEE Symp. Mass Storage Syst.
Technol., 2017, pp. 1-10.

N. Binkert, et al., “The gem5 simulator,” ACM SIGARCH Comput.
Archit. News, vol. 39, no. 2, pp. 1-7, 2011.

M. Poremba and Y. Xie, “Nvmain: An architectural-level main
memory simulator for emerging non-volatile memories,” in Proc.
IEEE Comput. Soc. Annu. Symp. VLSI, 2012, pp. 392-397.

The open-source code of path hashing, 2017. [Online]. Available:
https:/ / github.com/Pfzuo/Path-Hashing

D. Liu, et al., “Durable address translation in PCM-based flash
storage systems,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 2,
pp- 475-490, Feb. 2017.

https://redis.io/
https://memcached.org/
https://github.com/Pfzuo/Path-Hashing

998

[371]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.29, NO.5, MAY 2018

H.-S. Chang, Y.-H. Chang, Y.-H. Kuan, X.-Z. Huang, T.-W. Kuo,
and H.-P. Li, “Pattern-aware write-back strategy to minimize
energy consumption of PCM-based storage systems,” in Proc. 5th
Non-Volatile Memory Syst. Appl. Symp., 2016, pp. 1-6.

J. K. Kim, H. G. Lee, S. Choi, and K. I. Bahng, “A PRAM and
NAND flash hybrid architecture for high-performance embedded
storage subsystems,” in Proc. 8th ACM Int. Conf. Embedded Softw.,
2008, pp- 31-40.

J. S. Miguel,]J. Albericio, A. Moshovos, and N. E. Jerger,
“Doppelganger: A cache for approximate computing,” in Proc.
48th Int. Symp. Microarchitecture, 2015, pp. 50-61.

Y. Hua, H. Jiang, and D. Feng, “FAST: Near real-time searchable
data analytics for the cloud,” in Proc. Int. Conf. High Performance
Comput. Netw. Storage Anal., 2014, pp. 754-765.

Y. Sun, Y. Hua, S. Jiang, Q. Li, S. Cao, and P. Zuo, “SmartCuckoo:
A fast and cost-efficient hashing index scheme for cloud storage
systems,” in Proc. USENIX Annu. Techn. Conf., 2017, pp. 553-565.
A. D. Breslow, D. P. Zhang,]J. L. Greathouse, N. Jayasena, and
D. M. Tullsen, “Horton tables: Fast hash tables for in-memor
data-intensive computing,” in Proc. USENIX Conf. USENIX Annu.
Techn. Conf., 2016, pp. 281-294.

N. Piggin, “ddds: “dynamic dynamic data structure” algorithm,
for adaptive dcache hash table sizing. linux kernel mailing list,”
2008. [Online]. Available: https:/ /lwn.net/ Articles /302132 /

J. Triplett, P. E. McKenney, and J. Walpole, “Resizable, scalable,
concurrent hash tables via relativistic programming,” in Proc.
USENIX Conf. USENIX Annu. Techn. Conf., 2011, pp. 11-11.

H. Gao, J. F. Groote, and W. H. Hesselink, “Almost wait-free resiz-
able hashtables,” in Proc. 18th Int. Parallel Distrib. Process. Symp.,
2004, Art. no. 50.

J. Rao and K. A. Ross, “Making b+-trees cache conscious in main
memory,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2000,
pp- 475-486.

B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” ACM SIG-
METRICS Perform. Evalu. Rev., vol. 40, no. 1, pp. 53-64, 2012.

M. Mitzenmacher, A. W. Richa, and R. Sitaraman, “The power of
two random choices: A survey of techniques and results,” Hand-
book Randomized Comput., vol. 11, pp. 255-312, 2000.

V. Young, P. J. Nair, and M. K. Qureshi, “DEUCE: Write-efficient
encryption for non-volatile memories,” in Proc. 20th Int. Conf. Archit.
Support Programm. Languages Operating Syst., 2015, pp. 33—44.

Y. Choi, et al., “A 20 nm 1.8 v 8 gb PRAM with 40 mb/s program
bandwidth,” in Proc. IEEE Int. Solid-State Circuits Conf., 2012,
pp- 46-48.

A. Awad, P. Manadhata, S. Haber, Y. Solihin, and W. Horne,
“Silent shredder: Zero-cost shredding for secure non-volatile
main memory controllers,” in Proc. 21st Int. Conf. Archit. Support
Programm. Languages Operating Syst., 2016, pp. 263-276.

Y. Sun, Y. Hua, D. Feng, L. Yang, P. Zuo, and S. Cao,
“MinCounter: An efficient cuckoo hashing scheme for cloud stor-
age systems,” in Proc. IEEE 31st Symp. Mass Storage Syst. Technol.,
2015, pp. 1-7.

Bags-of-Words data set, 2008. [Online]. Available: http://archive.
ics.uci.edu/ml/datasets/Bag+of+Words

V. Tarasov, A. Mudrankit, W. Buik, P. Shilane, G. Kuenning, and
E. Zadok, “Generating realistic datasets for deduplication analy-
sis,” in Proc. USENIX Conf. Annu. Techn. Conf., 2012, pp. 24-24.
Z.Sun, et al., “A long-term user-centric analysis of deduplication
patterns,” Proc. IEEE 32nd Symp. Mass Storage Syst. Technol., 2016,
pp-1-7.

B. Debnath, S. Sengupta, and J. Li, “ChunkStash: Speeding up
inline storage deduplication using flash memory,” in Proc. USE-
NIX Annu. Techn. Conf., 2010, pp. 1-15.

I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner,
“FPTree: A hybrid SCM-DRAM persistent and concurrent B-tree
for storage class memory,” in Proc. Int. Conf. Manage. Data, 2016,
pp- 371-386.

S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh, “WORT:
Write optimal radix tree for persistent memory storage systems,”
in Proc. 15th USENIX Conf. File Storage Technol., 2017, pp. 257-270.
Y. Tian, S. M. Khan, D. A. Jiménez, and G. H. Loh, “Last-level
cache deduplication,” in Proc. 28th ACM Int. Conf. Supercomputing,
2014, pp. 53-62.

[60] B. Debnath, A. Haghdoost, A. Kadav, M. G. Khatib, and
C. Ungureanu, “Revisiting hash table design for phase change
memory,” in Proc. 3rd Workshop Interactions NVM/FLASH Operat-
ing Syst. Workloads, 2015, Art. no. 1.

Pengfei Zuo received the BE degree in computer
science and technology from Huazhong Univer-
sity of Science and Technology (HUST), China,
in 2014. He is currently working toward the PhD
degree majoring in computer science and tech-
nology at HUST. His current research interests
include data deduplication, non-volatile memory,
and key-value store. He publishes several papers
in major conferences including USENIX ATC,
SoCC, ICDCS, MSST, DATE, etc. He is a student
member of the IEEE.

Yu Hua received the BE and PhD degrees in
computer science from the Wuhan University,
China, in 2001 and 2005, respectively. He is a
professor with the Huazhong University of Sci-
ence and Technology, China. His research inter-
ests include computer architecture, cloud
computing, and network storage. He has more
than 100 papers to his credit in major journals
and international conferences including the IEEE
Transactions on Computers (TC), the IEEE
Transactions on Parallel and Distributed Systems
(TPDS), USENIX ATC, USENIX FAST, ACM SoCC, INFOCOM, SC,
ICDCS and MSST. He has been on the program committees of multiple
international conferences, including ASPLOS, SOSP, USENIX ATC,
RTSS, INFOCOM, ICDCS, MSST, ICNP and IPDPS. He is a senior
member of the IEEE, ACM and CCF, and a member of the USENIX.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

https://lwn.net/Articles/302132/
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

