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Abstract—Content-Defined Chunking (CDC) has been playing a key role in data deduplication systems recently due to its high

redundancy detection ability. However, existing CDC-based approaches introduce heavy CPU overhead because they declare the

chunk cut-points by computing and judging the rolling hashes of the data stream byte by byte. In this article, we propose FastCDC, a

Fast and efficient Content-Defined Chunking approach, for data deduplication-based storage systems. The key idea behind FastCDC is

the combined use of five key techniques, namely, gear based fast rolling hash, simplifying and enhancing the Gear hash judgment,

skipping sub-minimum chunk cut-points, normalizing the chunk-size distribution in a small specified region to address the problem of

the decreased deduplication ratio stemming from the cut-point skipping, and last but not least, rolling two bytes each time to further

speed up CDC. Our evaluation results show that, by using a combination of the five techniques, FastCDC is 3-12X faster than the

state-of-the-art CDC approaches, while achieving nearly the same and even higher deduplication ratio as the classic Rabin-based

CDC. In addition, our study on the deduplication throughput of FastCDC-based Destor (an open source deduplication project)

indicates that FastCDC helps achieve 1.2-3.0X higher throughput than Destor based on state-of-the-art chunkers.

Index Terms—Data deduplication, content-defined chunking, storage system, performance evaluation
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1 INTRODUCTION

DATA deduplication, an efficient approach to data reduc-
tion, has gained increasing attention and popularity in

large-scale storage systems due to the explosive growth of
digital data. It eliminates redundant data at the file- or
chunk-level and identifies duplicate contents by their crypto-
graphically secure hash signatures (e.g., SHA1 fingerprint).
According to deduplication studies conducted by Micro-
soft [1], [2] and EMC [3], [4], about 50 and 85 percent of the
data in their production primary and secondary storage sys-
tems, respectively, are redundant and could be removed by
the deduplication technology.

In general, chunk-level deduplication is more popular
than file-level deduplication because it identifies and
removes redundancy at a finer granularity. For chunk-level

deduplication, the simplest chunking approach is to cut the
file or data stream into equal, fixed-size chunks, referred to
as Fixed-Size Chunking (FSC) [5]. Content-Defined Chunk-
ing (CDC) based approaches are proposed to address the
boundary-shift problem faced by the FSC approach [6]. Specif-
ically, CDC declares chunk boundaries based on the byte
contents of the data stream instead of on the byte offset, as in
FSC, and thus helps detect more redundancy for deduplica-
tion. According to some recent studies [1], [2], [7], [8], CDC-
based deduplication approaches are able to detect about
10-20 percentmore redundancy than the FSC approach.

Currently, the most popular CDC approaches determine
chunk boundaries based on the Rabin fingerprints of the con-
tent, which we refer to as Rabin-based CDC [6], [9], [10].
Rabin-based CDC is highly effective in duplicate detection
but time-consuming, because it computes and judges
(against a condition value) Rabin fingerprints of the data
stream byte by byte [11]. In order to speed up the CDC pro-
cess, other hash algorithms have been proposed to replace
the Rabin algorithm for CDC, such as SampeByte [12],
Gear [13], etc. Meanwhile, the abundance of computation
resources afforded by multi and manycore processors [14],
[15] or GPU processors [16], [17], [18] has been leveraged for
CDC acceleration.

Generally, CDC consists of two distinctive and sequential
stages: (1) hashing in which fingerprints of the data contents
are generated and (2) hash judgment in which fingerprints are
compared against a given value to identify and declare chunk
cut-points. Our previous study of delta compression,
Ddelta [13], suggests that the Gear hash (i.e., fp ¼ ðfp << 1Þ þ
GðbÞ, see Section 3.2) is more efficient as a rolling hash for
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CDC. To the best of our knowledge, Gear appears to be one of
the fastest rolling hash algorithms for CDC at present since it
use much less calculation operations than others. However,
our empirical and analytical studies on Gear-based CDC
obtain three important observations:

� Observation�1 : the Gear-based CDChas the potential
problem of low deduplication ratio (i.e., the percentage
of redundant data reduced), about 10-50 percent
lower on some datasets (detailed in Section 4.2). This
is because, in the hash judgment stage of Gear-based
CDC, the sliding window size is very small, only
13 bytes in its current implementation [13].

� Observation �2 : the hash judgment stage becomes the
new performance bottleneck in Gear-based CDC.
This is because the accelerated hashing stage by Gear,
has shifted the bottleneck to the hash judgment stage.

� Observation �3 : Enlarging the predefined minimum
chunk size (used in CDC to avoid the very small-sized
chunks [6]) can further speed up the chunking process
(called cut-point skipping in this paper) but at the cost of
decreasing the deduplication ratio in Gear-based CDC.
This is because many chunks with skipped cut-points
are not divided truly according to the data contents
(i.e., content-defined). Our large scale study (detailed
in Section 4.3) suggests that skipping this predefined
min chunk size usually increases the chunking speed
by the ratio of Predefined min chunk size

Expected avg: chunk size but decreases the
deduplication ratio (about 15 percent decline in the
worst case).

Therefore, motivated by the above three observations, we
proposed FastCDC, a Fast and efficient CDC approach that
addresses the problems of low deduplication efficiency and
expensive hash judgement faced by Gear-based CDC. To
address the problems observed in the 1st and 2nd observa-
tions, we use an approach of enhancing and simplifying the
hash judgment to further reduce the CPU operations during
CDC for data deduplication. Specifically, FastCDC pads
several zero bits into the mask value in its hash-judging
statement to enlarge the sliding window size to the size of
48 Bytes used by Rabin-based CDC, which makes it able to
achieve nearly the same deduplication ratio as the Rabin-
based CDC; Meanwhile, by further simplifying and opti-
mizing the hash-judging statement, FastCDC decreases the
CPU overhead for the hash judgment stage in CDC.

For the 3rd observation and to further speed up chunking,
FastCDC employs a novel normalized Content-Defined
Chunking scheme, called normalized chunking, that normal-
izes the chunk-size distribution to a specified region that is
guaranteed to be larger than the minimum chunk size to effec-
tively address the problem facing the cut-point skipping
approach. Specifically, FastCDC selectively changes the
number of mask bits ‘1’ in the hash-judging statement of
CDC, and thus it normalizes the chunk-size distribution to a
small specified region (e.g., 8KB�16KB), i.e., the vast major-
ity of the generated chunks fall into this size range, and thus
minimizes the number of chunks of either too small or large
in size. The benefits are twofold.�1 , it increases the dedupli-
cation ratio by reducing the number of large-sized chunks.
�2 , it reduces the number of small-sized chunks, which
makes it possible to combine with the cut-point skipping

technique above to maximize the CDC speed without
sacrificing the deduplication ratio.

In addition, we propose a technique called “rolling two
bytes each time” for FastCDC, which further reduces the
calculation operations in the hashing stage by rolling two
bytes each time to calculate the chunking fingerprints in the
hashing stage, and then judging the even and odd bytes
respectively in the hash judgement stage. This further acceler-
ates the chunking process while achieving exactly the same
chunking results.

Our evaluation results based on seven large-scale datasets,
suggest that FastCDC is about 3-12� faster than the state of
art, while ensuring a comparably high deduplication ratio. In
addition, we have incorporated FastCDC in Destor [19], an
open source data deduplication system, and evaluation shows
that Destor using FastCDC helps achieve about 1.2-3.0X
higher system throughout than using other CDC approaches.
Meanwhile, due to its simplicity and effectiveness, FastCDC
has been adopted as the default chunker by several known
open source Github projects to speed up the detection of
duplicate contents, such as Rdedup [20], Content Block-
chain [21], etc. The released Rdedup version 2.0.0 states:
“rdedupe store performance has been greatly improved by
implementing many new techniques” and “our default CDC
algorithm is now FastCDC”.

2 BACKGROUND

Recently, chunk-level data deduplication becomes one of
the most popular data reduction method in storage systems
for improving storage and network efficiency. As shown in
Fig. 1, it splits a file into several contiguous chunks and
removes duplicates by computing and indexing hash
digests (or called fingerprints, such as SHA-1) of chunks [5],
[6], [22], [23]. The fingerprints matching means that their
corresponding chunks are duplicate, which thus simplifies
the global duplicates detection in storage systems. In the
past ten years, data deduplication technique has been dem-
onstrated its space efficiency functionality in the large-scale
production systems of Microsoft [1], [2] and EMC [3], [4].

Chunking is the first critical step in the operational path of
data deduplication, in which a file or data stream is divided
into small chunks so that each can be duplicate-identified.
Fixed-Size Chunking (FSC) [5] is simple and fast but may
face the problem of low deduplication ratio that stems from
the boundary-shift problem [6], [24]. For example, if one or
several bytes are inserted at the beginning of a file, all current
chunk cut-points (i.e., boundaries) declared by FSC will be
shifted and no duplicate chunkswill be detected.

Content-Defined Chunking (CDC) is proposed to solve
the boundary-shift problem. CDC uses a sliding-window tech-
nique on the content of files and computes a hash value (e.g.,
Rabin fingerprint [6], [9]) of the window. A chunk cut-point

Fig. 1. General workflow of chunk-level data deduplication.
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is declared if the hash value satisfies some pre-defined condi-
tion. As shown in Fig. 2, to chunk a file V2 that is modified
from the file V1, the CDC algorithm can still identify the cor-
rect boundary of chunksC1,C3, andC4, whose contents have
not been modified. As a result, CDC outperforms FSC in
terms of deduplication ratio and has been widely used in
backup [3], [22] and primary [1], [2] storage systems.

Although the widely used Rabin-based CDC helps obtain
a high deduplication ratio, it incurs heavy CPU overhead
[14], [16], [18], [25]. Specifically, in Rabin-based CDC, Rabin
hash for a sliding window containing the byte sequence B1,
B2; . . . ; Ba is defined as a polynomial

RabinðB1; B2; . . . ; BaÞ¼AðpÞ ¼
Xa
x¼1

Bxp
a�x

( )
mod D; (1)

where D is the average chunk size, a is the number of
bytes in the sliding window, and p is a number representing
an irreducible polynomial [9]. Rabin hash is a rolling hash
algorithm since it is able to compute the hash in an iterative
fashion, i.e., the current hash can be incrementally com-
puted from the previous value as

RabinðB2; B3; . . . ; Baþ1Þ
¼ f½RabinðB1; B2; . . . ; BaÞ �B1p

a�1�pþBaþ1gmodS:
(2)

However, Rabin-based CDC is time-consuming because it
computes and judges the hashes of the data stream byte by
byte, which renders the chunking process a performance
bottleneck in deduplication systems. There are many
approaches that accelerate the CDC process for deduplica-
tion systems and they can be broadly classified as either algo-
rithmic oriented or hardware oriented.We summarize below
some of these approaches that represent the state of the art.

Algorithmic-Oriented CDC Optimizations. Since the fre-
quent computations of Rabin fingerprints for CDC are time-
consuming, many alternatives to Rabin have been proposed
to accelerate the CDC process [12], [13], [24]. Sample-
Byte [12] is designed for providing fast chunking for fine-
grained network redundancy elimination, usually eliminat-
ing duplicate chunks as small as 32-64 bytes. It uses one
byte to declare a fingerprint for chunking, in contrast to
Rabin that uses a sliding window, and skips 1

2 of the
expected chunk size before chunking to avoid generating
extremely small-sized strings or chunks (they called “avoid
oversampling”). Gear [13] uses fewer operations to generate
rolling hashes by means of a small random integer table to

map the values of the byte contents, so as to achieve higher
chunking throughput. AE [24] is a non-rolling-hash-based
chunking algorithm that employs an asymmetric sliding
window to identify extremums of data stream as cut-points,
which reduces the computational overhead for CDC. Yu
et al. [26] adjust the function for selecting chunk boundaries
such that if weak conditions are not met, the sliding win-
dow can jump forward, avoiding unnecessary calculation
steps. RapidCDC [27] leverages the data locality to record
the chunking positions to reduce the CDC computations for
the duplicate chunks to appear next time.

Hardware-Oriented CDC Optimizations. StoreGPU [16], [17]
and Shredder [18] make full use of GPU’s computational
power to accelerate popular compute-intensive primitives
(i.e., chunking and fingerprinting) in data deduplication.
P-Dedupe [14] pipelines deduplication tasks and then further
parallelizes the sub-tasks of chunking and fingerprintingwith
multiple threads and thus achieves higher throughput. SS-
CDC [28] proposes a two-stage prallel content-defined chunk-
ing approachwithout compromising deduplication ratio.

It is noteworthy that there are other chunking approaches
trying to achieve a higher deduplication ratio but introduce
more computation overhead on top of the conventional CDC
approach. TTTD [29] and Regression chunking [2] introdu-
ces one or more additional thresholds for chunking judg-
ment, which leads to a higher probability of finding chunk
boundaries and decreases the chunk size variance. MAXP
[30], [31], [32] treats the extreme values in a fixed-size region
as cut-points, which also results in smaller chunk size vari-
ance. In addition, Bimodal chunking [33], Subchunk [34],
and FBC [35] re-chunk the non-duplicate chunks into smaller
ones to detect more redundancy.

For completeness and self-containment we briefly dis-
cuss other relevant deduplication issues here. A typical data
deduplication system follows the workflow of chunking,
fingerprinting, indexing, and storage management [19],
[22], [36], [37]. The fingerprinting process computes the
cryptographically secure hash signatures (e.g., SHA1) of
data chunks, which is also a compute-intensive task but can
be accelerated by certain pipelining or parallelizing techni-
ques [14], [38], [39], [40]. Indexing refers the process of iden-
tifying the identical fingerprints for checking duplicate
chunks in large-scale storage systems, which has been well
explored in many previous studies [19], [22], [41], [42]. Stor-
age management refers to the storage and possible post-
deduplication processing of the non-duplicate chunks and
their metadata, including such processes as related to fur-
ther compression [13], defragmentation [43], reliability [44],
security [45], etc. In this paper, we focus on designing a
very fast and efficient chunking approach for data dedupli-
cation since the CPU-intensive CDC task has been widely
recognized as a major performance bottleneck of the CDC-
based deduplication system [17], [18], [27], [28].

3 FASTCDC DESIGN AND IMPLEMENTATION

3.1 FastCDC Overview

FastCDC aims to provide high performance CDC. And
there are three metrics for evaluating CDC performance,
namely, deduplication ratio, chunking speed, and the aver-
age generated chunk size. Note that the average generated

Fig. 2. The sliding window technique for the CDC algorithm. The hash
value of the sliding window, fp, is computed via the Rabin algorithm (this
is the hashing stage of CDC). If the lowest log2D bits of the hash value
matches a threshold value r, i.e., fp mod D = r, this offset (i.e., the cur-
rent position) is marked as a chunk cut-point (this is the hash-judging
stage of CDC).
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chunk size is also an important CDC performance metric
since it reflects the metadata overhead for deduplication
indexing, i.e., the larger the generated chunk size is, the
fewer the number of chunks and thus the less metadata will
be processed by data deduplication.

Generally, it is difficult, if not impossible, to improve
these three performance metrics simultaneously because
they can be conflicting goals. For example, a smaller average
generated chunk size leads to a higher deduplication ratio,
but at the cost of lower chunking speed and high metadata
overheads. Thus, FastCDC is designed to strike a sensible trade-
off among these three metrics so as to strive for high performance
CDC, by using a combination of the five techniques with their
complementary features as shown in Fig. 3.

� Gear-based rolling hashing: due to its hashing sim-
plicity and rolling effectiveness, Gear hash is shown
to be one of the fastest rolling hash algorithms for
CDC, and we introduce it and discuss its chunking
efficiency in detail in Section 3.2.

� Optimizing hash judgment: using a zero-padding
scheme and a simplified hash-judging statement to
speed up CDC without compromising the dedupli-
cation ratio, as detailed in Section 3.3.

� Sub-minimum chunk cut-point skipping: enlarging
the predefined minimum chunk size and skipping
cut-points for chunks smaller than that to provide a
higher chunking speed and a larger average gener-
ated chunk size, as detailed in Section 3.4.

� Normalized chunking: selectively changing the num-
ber of mask ‘1’ bits for the hash judgment to approxi-
mately normalize the chunk-size distribution to a
small specified region that is just larger than the pre-
defined minimum chunk size, ensuring both a higher
deduplication ratio and higher chunking speed, as
detailed in Section 3.5.

� Rolling two bytes each time: furhter speeding up
chunking without affecting the chunking results by
reducing the calculation operations in the hashing
stage by rolling two bytes each time to calculate the

chunking fingerprints in the hashing stage, and then
judging the even and odd bytes respectively in the
hash judgement stage, as detailed in Section 3.7.

In general, the key idea behind FastCDC is the combined
use of the above five key techniques for CDC acceleration,
especially employing normalized chunking to address the
problem of decreased deduplication ratio facing the cut-
point skipping, and thus achieve high performance CDC on
the three key metrics.

3.2 Gear-Based Rolling Hashing

In this subsection, we elaborate on and analyze the Gear-
based rolling hash, and then introduce the new challenges
and opportunities after we introduce Gear-based CDC.
Gear-based rolling hash is first employed by Ddelta [13] for
delta compression, which helps provide a higher delta
encoding speed and is suggested to be a good rolling hash
candidate for CDC.

A good hash function must have a uniform distribution
of hash values regardless of the hashed content. As shown
in Fig. 4, Gear-based CDC achieves this in two key ways: (1)
It employs an array of 256 random 64-bit integers to map
the values of the byte contents in the sliding window (i.e.,
the calculated bytes, whose size is the bit-width of the fp);
and (2) The addition (“þ”) operation adds the new byte in
the sliding window into Gear hashes while the left-shift
(“<< ”) operation helps strip away the last byte of the last
sliding window (e.g., Bi�1 in Fig. 4). This is because, after
the “<< ” and modulo operations, the last byte Bi�1 will be
calculated into the fp as the ðG½Bi�1� << nÞ mod 2n, which
will be equal to zero. As a result, Gear generates uniformly
distributed hash values by using only three operations (i.e.,
“þ”, “<< ”, and an array lookup), enabling it to move
quickly through the data content for the purpose of CDC.
Table 1 shows a comparison among the two rolling hash
algorithms: Rabin and Gear, which suggests Gear uses far
fewer calculation operations than Rabin, thus being a good
rolling hash candidate for CDC.

To better illustrate Gear-based CDC, Algorithm 3.2 pro-
vides the detailed chunking pseudo code that uses the Gear
table for calculating the rolling fingerprints and the hash judg-
ing statement similar to the classical Rabin-based CDC. In
Fig. 5, we compare the chunk-size distributions each gener-
ated by Rabin- and Gear-based CDC on the random-number
workload, and against the mathematical analysis based on
Equation (3) (see Section 3.4), which indicates that the three
are almost identical (for more chunk-size distribution results,
see Fig. 12 in Section 4.2). And the previous study Ddelta [13]
also suggests Gear is considered to be a good rolling hash can-
didate for CDC both on the hashing efficiency and on the

Fig. 3. The five key techniques used in FastCDC and their corresponding
benefits for high performance CDC.

Fig. 4. A schematic diagram of the Gear hash.

TABLE 1
The Hashing Stage of the Rabin- and Gear-Based CDC

Name Pseudocode Speed

Rabin fp ¼ ððfp^UðaÞÞ << 8Þjb^T ½fp >> N � Slow

Gear fp ¼ ðfp << 1Þ þGðbÞ Fast

Here ‘a’ and ‘b’ denote contents of the first and last byte of the sliding window
respectively, ‘N’ is the length of the content-defined sliding window, and ‘U’,
‘T’, ‘G’ denote the predefined arrays [6], [11], [13]. ‘fp’ represents the finger-
print of the sliding window.
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chunking efficiency. However, according to our experimen-
tal analysis, there are still challenges and opportunities for
Gear-based CDC, such as low deduplication ratio, expensive
hash judgment, further acceleration by skipping, etc. We
elaborate on these issues as follows.

Algorithm 1. GearCDC8KB

Input: data buffer, src; buffer length, n
Output: chunking breakpoint i
MinSize 2KB; MaxSize 64KB;
i MinSize; fp 0;
if n �MinSize then
return n

while i < n do
fp ¼ ðfp << 1Þ þGear½ src½i� �;
if ðfp & 0x1fff ¼¼ 0x78Þ jj i >¼ MaxSize then
return i;

return i;

Low Deduplication Ratio Due to the Limited Sliding Window
Size. The Gear-based CDC has the potential problem of low
deduplication ratio, about 10-50 percent lower on some data-
sets (see the evaluation results in Section 4.2). This is becase,
the traditional hash judgment for the Rabin-based CDC, as
shown in Fig. 2 (i.e., “fp mod D==r”), is also used by the
Gear-based CDC [13] as shown in Algorithm 3.2. But this
results in a smaller sized sliding window used by Gear-
based CDC since it uses Gear hash for chunking. For exam-
ple, as shown in Fig. 6, the sliding window size of the Gear-
based CDC will be equal to the number of the ‘1’ bits used
by the mask value. Therefore, when using a mask value of
0x1fff ( i.e., 213 � 1, there are thirteen ‘1’ bits) for the
expected chunk size of 8 KB, the sliding window for the
Gear-based CDC would be 13 bytes while that of the Rabin-
based CDC would be 48 bytes [6]. The smaller sliding win-
dow size of the Gear-based CDC can lead to more chunking
position collisions (i.e., randomly marking the different
positions as the chunk cut-points), resulting in the decrease
in deduplication ratio.

The Expensive Hash Judgment. In Gear-based CDC, the
accelerated hashing stage by the fast Gear, has shifted the bot-
tleneck to the hash judgment stage that requires more opera-
tions as shown in Algorithm 3.2. Our implementation and
in-depth analysis of Gear-based CDC on several datasets

(detailed in Section 4) suggest that its hash-judging stage
accounts for more than 60 percent of its CPU overhead during
CDC after the fast Gear hash is introduced. Thus, there is a lot of
room for the optimization of the hash judging stage to further
accelerate the CDC process as discussed later in Section 3.3.

Further Speed up Chunking by Skipping. Another observa-
tion is that the minimum chunk size used for avoiding
extremely small-sized chunks, can be also employed to
speed up CDC by the cut-point skipping, i.e., eliminating
the chunking computation in the skipped region. But this
minimum chunk size for cut-point skipping approach
decreases the deduplication ratio (as demonstrated in the
evaluation results in Fig. 12c in Section 4.3) since many
chunks are not divided truly according to the data contents,
i.e., not really content-defined.

The last observation from the minimum chunk size skip-
ping motivates us to consider a new CDC approach that (1)
keeps all the chunk cut-points that generate chunks larger
than a predefined minimum chunk size and (2) enables the
chunk-size distribution to be normalized to a relatively
small specified region, an approach we refer to as normalized
chunking in this paper, as described in Section 3.5.

3.3 Optimizing Hash Judgment

In this subsection,we optimize the hash judgment stage on top
of the Gear-based CDC, which helps further accelerate the
chunking process and increase the deduplication ratio to reach
that of the Rabin-based CDC. More specifically, FastCDC
incorporates twomain optimizations as elaborated below.

Enlarging the Sliding Window Size by Zero Padding. As dis-
cussed in Section 3.2, the Gear-based CDC employs the
same conventional hash judgment used in the Rabin-based
CDC, where a certain number of the lowest bits of the fin-
gerprint are used to declare the chunk cut-point, leading to
a shortened sliding window for the Gear-based CDC (see
Fig. 6) because of the unique feature of the Gear hash. To
address this problem, FastCDC enlarges the sliding window
size by padding a number of zero bits into the mask value.
As illustrated by the example of Fig. 7, FastCDC pads five
zero bits into the mask value and changes the hash judg-
ment statement to “fp & mask == r”. If the masked bits of fp
match a threshold value r, the current position will be
declared as a chunk cut-point. Since Gear hash uses one
left-shift and one addition operation to compute the rolling
hash, this zero-padding scheme enables 10 bytes (i.e.,
Bi; . . . ; Biþ9), instead of the original five bytes, to be
involved in the final hash judgment by the five masked one
bits (as the red box shown in Fig. 7) and thus makes the

Fig. 5. Chunk-size distributions of Rabin- and Gear-based CDC
approaches with average chunk size of 8KB (without max/min chunk
size requirement). “Rabin” and “Gear” denote our experimental results
after CDC and “Math” denotes theoretical analysis, where they are
shown to be nearly identical.

Fig. 6. An example of the sliding window technique used in the Gear-
based CDC. Here CDC consists of two stages: hashing and hash judg-
ment. The size of the sliding window used for hash judgment is only 5
bytes because of the computation principles of the Gear hash.
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sliding window size equal or similar to that of the Rabin-
based CDC [6], minimizing the probability of the chunking
position collision. As a result, FastCDC is able to achieve a
deduplication ratio as high as that by the Rabin-based CDC.

Simplifying the Hash Judgment to Accelerate CDC. The con-
ventional hash judgment process, as used in the Rabin-
based CDC, is expressed in the programming statement of
“fp mod D¼¼r” [6], [13]. For example, the Rabin-based
CDC usually defines D and r as 0x02000 and 0x78, accord-
ing to the known open source project LBFS [6], to obtain the
expected average chunk size of 8 KB. In FastCDC, when
combined with the zero-padding scheme introduced above
and shown in Fig. 7, the hash judgment statement can be
optimized to “fp & Mask¼¼0”, which is equivalent to
“!fp & Mask”. Therefore, FastCDC’s hash judgment state-
ment reduces the register space for storing the threshold
value r and avoids the unnecessary comparison operation
that compares “fp & Mask” and r, thus further speeds up
the CDC process as verified in Section 4.2.

3.4 Cut-Point Skipping

Most of CDC-based deduplication systems impose a limit
of the maximum and minimum chunk sizes, to avoid the
pathological cases of generating many extremely large- or
small-sized chunks byCDC [1], [6], [33], [34], [37], [46]. A com-
mon configuration of the average, minimum, and maximum
parameters follows that used by LBFS [6], i.e., 8, 2, and 64 KB.
Our previous study [13] and experimental observations (see
Fig. 11 in Section 4.2, using curve fitting) suggest that the
cumulative distribution of chunk sizeX in Rabin-based CDC
approaches with an expected chunk size of 8 KB (without the
maximum and minimum chunk size requirements) generally
follows an exponential distribution as follows:

P ðX � xÞ ¼ F ðxÞ ¼ ð1� e�
x

8192Þ; x 	 0: (3)

Note that this theoretical exponential distribution in
Equation (3) is based on the assumption that the data con-
tent and Rabin hashes of contents (recall Equation (1) and
Fig. 2 for CDC) follow a uniform distribution. Equation (3)
suggests that the value of the expected chunk size will be
8 KB according to exponential distribution.

According to Equation (3), the chunks smaller than 2 KB
and larger than 64 KB would account for about 22.12 and
0.03 percent of the total number of chunks respectively. This
means that imposing the maximum chunk size requirement

only slightly hurts the deduplication ratio but skipping
cut-points before chunking to avoid generating chunks
smaller than the prescribed minimum chunk size, or called
sub-minimum chunk cut-point skipping , will impact the dedu-
plication ratio significantly as evidenced in Fig. 12c. This is
because a significant portion of the chunks are not divided
truly according to the data contents, but forced by this cut-
point skipping.

Given FastCDC’s goal of maximizing the chunking
speed, enlarging the minimum chunk size and skipping sub-
minimumchunk cut-pointwill help FastCDC achieve a higher
CDC speed by avoiding the operations for the hash calculation
and judgment in the skipped region. This gain in speed, how-
ever, comes at the cost of reduced deduplication ratio. To
address this problem,wewill develop a normalized chunking
approach, to be introduced in the next subsection.

It is worth noting that this cut-point skipping approach,
by avoiding generating chunks smaller than the minimum
chunk size, also helps increase the average generated chunk
size. In fact, the average generated chunk size exceeds the
expected chunk size by an amount equal to the minimum
chunk size. This is because the F(x) in Equation (3) is changed

to ð1� e�
x�MinSize

8192 Þ after cut-point skipping, thus the value of
the expected chunk size becomes 8 KB + minimum chunk
size, which will be verified in Section 4.3. The speedup
achieved by skipping the sub-minimum chunk cut-point can

be estimated by 1þ the minimum chunk size
the expected chunk size . The increased chunk-

ing speed comes from the eliminated computation on the
skipped region, which will also be evaluated and verified in
Section 4.3.

3.5 Normalized Chunking

In this subsection, we propose a novel chunking approach,
called normalized chunking, to solve the problem of
decreased deduplication ratio facing the cut-point skipping
approach. As shown in Fig. 8, normalized chunking gener-
ates chunks whose sizes are normalized to a specified
region centered at the expected chunk size. After normal-
ized chunking, there are almost no chunks of size smaller
than the minimum chunk size, which means that normal-
ized chunking enables skipping cut-points for subminimum
chunks to reduce the unnecessary chunking computation
and thus speed up CDC.

In our implementation of normalized chunking, we selec-
tively change the number of effective mask bits (i.e., the
number of ‘1’ bits) for the hash-judging statement. For the
traditional CDC approach with expected chunk size of 8 KB
(i.e., 213), 13 effective mask bits are used for hash judgment

Fig. 7. An example of the sliding window technique proposed for
FastCDC. By padding y zero bits into the mask value for hash judgment,
the size of the sliding window used in FastCDC is enlarged to about 5+y
bytes, where y=5 in this example.

Fig. 8. A conceptual diagram of the normalized chunking combined with
the subminimum chunk cut-point skipping. The dotted line shows a
higher level of normalized chunking.
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(e.g., fp & 0x1fff¼¼r). For normalized chunking, more
than 13 effective mask bits are used for hash judgment (e.g.,
fp & 0x7fff¼¼r) when the current chunking position is
smaller than 8 KB, which makes it harder to generate
chunks of size smaller than 8 KB. On the other hand, fewer
than 13 effective mask bits are used for hash judgment (e.g.,
fp & 0x0fff¼¼r) when the current chunking position is
larger than 8 KB, which makes it easier to generate chunks
of size larger than 8 KB. Therefore, by changing the number
of ‘1’ bits in FastCDC, the chunk-size distribution will be
approximately normalized to a specified region always
larger than the minimum chunk size, instead of following
the exponential distribution (see Fig. 5).

Generally, there are three benefits or features of normal-
ized chunking (NC):

� NC reduces the number of small-sized chunks,
which makes it possible to combine it with the cut-
point skipping approach to achieve high chunking
speed without sacrificing the deduplication ratio as sug-
gested in Fig. 8.

� NC further improves the deduplication ratio by
reducing the number of large-sized chunks, which
compensates for the reduced deduplication ratio
caused by reducing the number of small-sized
chunks in FastCDC.

� The implementation of FastCDC does not add addi-
tional computing and comparing operations. It sim-
ply separates the hash judgment into two parts,
before and after the expected chunk size.

Fig. 9 shows the chunk-size distribution after normalized
chunking in comparison with FastCDC without NC on the
TAR dataset (whose workload characteristics are detailed in
Table 2 in Section 4.1). The normalization levels 1, 2, 3 indi-
cate that the normalized chunking uses the mask bits of (14,
12), (15, 11), (16, 10), respectively, where the first and the
second integers in the parentheses indicate the numbers of
effective mask bits used in the hash judgment before and
after the expected chunk size (or normalized chunk size) of
8 KB. Fig. 9 also suggests that the chunk-size distribution is

a reasonably close approximation of the normal distribution
centered on 8 KB at the normalization level of 2 or 3.

As shown in Fig. 9, there are only a very small number of
chunks smaller than 2 or 4 KB after normalized chunking
while FastCDC without NC has a large number of chunks
smaller than 2 or 4 KB (consistent with the discussion in
Section 3.4). Thus, when combining NC with the cut-point
skipping to speed up the CDCprocess, only a very small por-
tion of chunk cut-points will be skipped in FastCDC, leading
to nearly the same deduplication ratio as the conventional
CDC approaches without the minimum chunk size require-
ment. In addition, normalized chunking allows us to enlarge
the minimum chunk size to maximize the chunking speed
without sacrificing the deduplication ratio.

It is worth noting that the chunk-size distribution shown
in Fig. 9 is not truly normal distribution but an approximation
of it. Actually, it follows an improved exponential distribu-
tion calculating from Equation (3) as follows (taking the NC 2
as an example and using the average chunk size of 8 KB)

P ðX � xÞ ¼ F ðxÞ ¼ 1� e�
x

8192
4; 0 � x � 8192

1� e
� x
8192=4; x > 8192

�
: (4)

Therefore, Figs. 9c and 9d shows a closer approximation
of normal distribution of chunk size achieved by using the
normalization levels 2 and 3. Interestingly, the highest nor-
malization level of NC would be equivalent to Fixed-Size
Chunking (FSC), i.e., all the chunk sizes are normalized to
be equal to the expected chunk size. Since FSC has a very
low deduplication ratio but extremely high chunking speed,
it means that there will be a “sweet spot” among the nor-
malization level, deduplication ratio, and chunking speed,
which will be studied and evaluated in Section 4.

3.6 Putting It All Together

To put things together and in perspective. Algorithm 3.6
describes FastCDC combining the three key techniques:
optimizing hash judgment, cut-point skipping, and normal-
ized chunking (with the expected chunk size of 8 KB). The

Fig. 9. Chunk-size distribution of FastCDC with normalized chunking
(NC) at different normalization levels.

TABLE 2
Workload Characteristics of the Seven Datasets Used

in the Performance Evaluation

Name Size Workload descriptions

TAR 56 GB 215 tarred files from several open source projects
such as GCC, GDB, Emacs, etc. [47]

LNX 178 GB 390 versions of Linux source code files (untarred).
There are totally 16, 381, 277 files [48].

WEB 237 GB 102 days’ snapshots of the website: news.sina.com,
which are collected by crawling software wget
with a maximum retrieval depth of 3.

VMA 138 GB 90 virtual machine images of different OS release
versions, including CentOS, Fedora, etc. [49]

VMB 1.9 TB 125 backups of an Ubuntu 12.04 virtual machine
image in use by a research group.

RDB 1.1 TB 198 backups of the Redis key-value store database
snapshots, i.e., dump.rdb files.

SYN 2.1 TB 300 synthetic backups. The backup is simulated
by the file create/delete/modify operations [50].
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data structure “Gear” is a predefined array of 256 random
64-bit integers with one-to-one mapping to the values of
byte contents for chunking [13].

Algorithm 2. FastCDC8KB (with NC)

Input: data buffer, src; buffer length, n
Output: chunking breakpoint i
MaskS  0x0000d9f003530000LL; // 15 ‘1’ bits;
MaskA 0x0000d93003530000LL; // 13 ‘1’ bits;
MaskL 0x0000d90003530000LL; // 11 ‘1’ bits;
MinSize 2 KB; MaxSize 64 KB;
fp 0; i MinSize; NormalSize 8 KB;
if n �MinSize then
return n;

if n 	MaxSize then
n MaxSize;

else if n � NormalSize then
NormalSize n;

for ; i < NormalSize; iþþ; do
fp ¼ ðfp << 1Þ þGear½ src½i� �;
if ! ð fp & MaskS Þ then
return i; //if the masked bits are all ‘0’;

for ; i < n; iþþ; do
fp ¼ ðfp << 1Þ þGear½ src½i� �;
if ! ð fp & MaskL Þ then
return i; //if the masked bits are all ‘0’;

return i;

Algorithm 3. RabinCDC8KB(With NC)

Input: data buffer, src; buffer length, n
Output: chunking breakpoint i
MinSize 2 KB; MaxSize 64 KB;
fp 0; i MinSize; NormalSize 8 KB;
if n �MinSize then
return n;

if n 	MaxSize then
n MaxSize;

else if n � NormalSize then
NormalSize n;

for ; i < NormalSize; iþþ; do
fp ¼ ððfp^UðaÞÞ << 8Þjb^T ½fp >> N �;
if fp & ð8192 
 2� 1Þ ¼¼ 0x78 then
return i;

for ; i < n; iþþ; do
fp ¼ ððfp^UðaÞÞ << 8Þjb^T ½fp >> N �;
if fp & ð8192=2� 1Þ ¼¼ 0x78 then
return i;

return i;

As shown in Algorithm 3.6, FastCDC uses normalized
chunking to divide the chunking judgment into two loops
with the optimized hash judgment. Note that FastCDC
without normalized chunking is not shown here but can be
easily implemented by using the new hash-judging state-
ment “! fp & MaskA” where the MaskA is padded with 35
zero bits to enlarge the sliding window size to 48 bytes as
that used in the Rabin-based CDC [6]. Note that MaskA,
MaskS, and MaskL are three empirically derived values
where the padded zero bits are almost evenly distributed
for slightly higher deduplication ratio according to our large
scale tests.

FastCDC implements normalized chunking by using
mask value MaskS and MaskL to make the chunking judg-
ment harder or easier (to generate chunks smaller or larger
than the expected chunk size) when the current position is
smaller or larger than the expected chunk size, respectively.
And the number of ‘1’ bits in MaskS and MaskL can be
changed for different normalization levels. The minimum
chunk size used in Algorithm 3.6 is 2 KB, which can be
enlarged to 4 KB or 8 KB to further speed up the CDC pro-
cess while combining with normalized chunking. Tuning
the parameters of minimum chunk size and normalization
level will be studied and evaluated in the next Section.

In addition, we implement the normalized chunking
scheme in Rabin-based CDC as shown in Algorithm 3.6.
This improved Rabin-based CDC is also evaluated in the
next Section. Note that the hash judgment optimization for
Gear is not applied for Rabin. This is because there are
many zero hash values generated by Rabin [9], which
results too many positions satisfying the chunking judg-
ment “ðfp&MaskValueÞ ¼¼ false” and thus the generated
average chunk size after Rabin-based CDC will be far blow
the expected average chunk size.

3.7 Rolling Two Bytes Each Time

Besides the techniques mentioned in the above subsection,
we also propose another independent technique called
“rolling two bytes each time” on top of FastCDC. As shown
in Algorithm 3.7, the core idea of this technique is that the
fingerprint fp is rolling two bytes each time (i.e.,
“fp << 2”) in contrast to the traditional way of rolling one
byte each time (see Algorithm 3.2), and then we judge the
even and odd bytes respectively to determine the chunks’
boundaries. Specifically, �1 for the even bytes, we use the
Gear_ls table (Gear_ls contains elements from the Gear table,
which are all left shift one bit) and the mask value MaskA_ls
(i.e., MaskA<< 1) for the hash judgment in FastCDC, this is
because when we judge the fp for the even bytes, fp has been
already left shift two bits (as described in Algorithm 3.7);�2
for the odd bytes, we process the fingerprints using Gear
table and the mask valueMaskA in the traditional way.

Algorithm 4. Rolling Two Bytes Each Time on
FastCDC8KB (Without NC for Simplicity)

Input: data buffer, src; buffer length, n
Output: chunking breakpoint i
MaskA 0x0000d93003530000LL; // 13 ‘1’ bits ;
MaskA ls (MaskA<< 1Þ; fp 0; i MinSize;
MinSize 2KB; MaxSize 64KB;
if n �MinSize then
return n;

if n 	MaxSize then
n MaxSize;

while i < ðn=2Þ do
fp ¼ ðfp << 2Þ þGear ls½ src½2 
 i� �;
if ! ð fp & MaskA ls Þ then
return 2 
 i;

fpþ ¼ Gear½ src½2 
 iþ 1� �;
if ! ð fp & MaskA Þ then
return 2 
 iþ 1;

return n;
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This technique is simple but very useful for FastCDC since
it reduces one shift operation when chunking each two bytes
compared with the traditional approach (rolling one byte
each time as shown in Algorithm 3.2) while ensuring exactly
the same chunking results. Note that it requires to lookup
one more table and increases additional computation opera-
tions of ‘2 
 i’ and ‘2 
 iþ 1’, but these overheads are minor
and FastCDC using this technique is about 30-40 percent
faster than rolling one byte each time according to our evalua-
tion results discussed in the next section.

4 PERFORMANCE EVALUATION

4.1 Experimental Setup

Experimental Platform. To evaluate FastCDC, we implement
a prototype of the data deduplication system on the Ubuntu
18.04.1 operating system running on an Intel Xeon(R) Gold
6,130 processor at 2.1 GHz, with a 128 GB RAM. To better
evaluate the chunking speed, another Intel i7-8700 proces-
sor at 3.2 GHz is also used for comparison.

Configurations for CDC and Deduplication. Three CDC
approaches, Rabin-, Gear-, and AE-based CDC, are used as
the baselines for evaluating FastCDC. Rabin-based CDC is
implemented based on the open-source project LBFS [6]
(also used inmany published studies [7], [19] or project [51]),
where the sliding window size is configured to be 48 bytes.
The Gear- and AE-based CDC schemes are implemented
according to the algorithms described in their papers [13],
[24], and we obtain performance results similar to and con-
sistent with those reported in these papers. Here all the CDC
approaches are configured with the maximum and mini-
mum chunk sizes of 8� and 1

4� of the expected chunk size,
the same as configured in LBFS [6]. The deduplication proto-
type consists of approximately 3,000 lines of C code, which is
compiled by GCC 7.4.0 with the “-O3” compiler option to to
maximize the speed of the resulting executable.

Performance Metrics of Interest. Chunking speed is measured
by the in-memory processing speed of the evaluated CDC

approaches and obtained by the average speed of five runs.
Deduplication ratio is measured in terms of the percentage of

duplicates detected after CDC, i.e., The size of duplicate data detected
Total data size before deduplication.

Average chunk size after CDC is Total data size
Number of chunks, which reflects

themetadata overhead for deduplication indexing.
Evaluated Datasets. Seven datasets with a total size of

about 6 TB are used for evaluation as shown in Table 2.
These datasets consist of the various typical workloads of
deduplication, including the source code files, virtual
machine images, database snapshots, etc., whose deduplica-
tion ratios vary from 40 to 98 percent, which will be detailed
in Table 3 in the next subsection.

4.2 A Study of Optimizing Hash Judgment

This subsection discusses an empirical study of FastCDC
using techniques of the optimized hash judgment and
‘rolling two bytes each time’. Fig. 10 shows the chunking
speed of the four CDC approaches running on the RDB data-
set, as a function of the expected chunk size and all using
theminimum chunk size of 14� of that for cut-point skipping.
In general, the Rabin-based CDC has the lowest speed, and
Gear-based CDC are about 3� faster than Rabin. FastCDC
using optimized hash judgement (i.e., FC’ in Fig. 10) is

TABLE 3
A Comparison Among the Rabin-Based CDC (RC), Gear-Based CDC (GC), and FastCDC (FC) Approaches in Terms of the

Deduplication Ratio and the Average Size of Generated Chunks, as a Function of the Expected Chunk Size

Fig. 10. Chunking speed, as a function of the expected chunk size, of
Rabin-based CDC (RC), Gear-based CDC (GC), FastCDC using opti-
mized hash judgement (FC) and rolling two bytes each time (FC’) on two
CPU processors.
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about 5� faster than Rabin and 1.5� faster than Gear regard-
less of the speed of the CPU processor and the expected
chunk size. The high chunking speed of FastCDC stems
from its simplification of the hash judgment after the fast
Gear hash is used for chunking as described in Section 3.3.
Meanwhile, FastCDC using ‘rolling two bytes each time’
(i.e., FC’ in Fig. 10) further increases the chunking speed by
40-50 percent since it further reduces calculation operation
during CDC. Note that FC’ achieves exactly the same chunk-
ing results as FC, thus we do not discuss metrics of dedup-
lication ratio and generated chunk size for FC’ in the
remainder of this paper.

Table 3 shows the deduplication ratio and the average
size of generated chunks (post-chunking) achieved by the
three CDC approaches. We compare the Gear-based CDC
(GC), and FastCDC (FC) approaches against the classic
Rabin-based CDC (i.e., the baseline: RC) and record the per-
centage differences (in parentheses).

In general, FastCDC achieves nearly the same deduplica-
tion ratio as Rabin regardless of the expected chunk size
and workload, and the difference between them is tiny as
shown in the 3rd, 5th, 7th columns in Table 3 except on the
WEB dataset. On the other hand, the Gear-based CDC has a
much lower deduplication ratio on the datasets TAR and
WEB due to its limited sliding window size as discussed in
Section 3.2.

For the metric of the average size of generated chunks, the
difference between the Rabin-based CDC and FastCDC is
smaller than �1.0 percent on most of the datasets. For the
datasets WEB, FastCDC has 7.89 percent larger average
chunk size than Rabin-based CDC, which is acceptable since
the larger average chunk sizemeans fewer chunks and finger-
prints for indexing in a deduplication system (without
sacrificing deduplication ratio) [3]. But for the Gear-based
CDC, the average chunk size differs significantly in some
datasets while its deduplication ratio is still a bit lower than
other CDC approaches due to its smaller slidingwindow size.

We also compare the chunk-size distributions of the three
tested chunking approaches in Fig. 11: FastCDC has nearly
the same chunk-size distribution as Rabin on datasets TAR,
VMA, and RDB, which generally follows the exponential
distribution as discussed in Section 3.4. Note that the results

in Fig. 11b are very different from others. This is because
there are many zero bytes in this dataset according to our
observation, which makes the chunking fingerprints not so
random (thus not follow the the exponential distribution).
However, comparing with Rabin and Gear, FastCDC’s
chunk-size distribution on WEB is the most similar to other
datasets, which explains why FastCDC achieves the highest
deduplication ratio on WEB among the three tested chunk-
ing approaches (see Table 3).

In summary, FastCDC with the optimized hash judg-
ment achieves a chunking speed that is 5� higher than
Rabin-based CDC while satisfactorily solving the problems
of low deduplication ratio and smaller sliding window size
faced by Gear-based CDC.

4.3 Evaluation of Cut-Point Skipping

This subsection discusses the evaluation results of cut-point
skipping technique. Figs. 12a and 12b show the impact of
applying different minimum chunk sizes on the chunking
speed of FastCDC. Since the chunking speed is not so sensi-
tive to the workloads, we only show the three typical work-
loads in Fig. 12. In general, cut-point skipping greatly
accelerates the CDC process since the skipped region will
not be hash-processed by CDC. The speedup of the FastCDC
applying the minimum chunk sizes of 4 and 2 KB over the
FastCDC without the constraint of the minimum chunk size
(i.e., Min-0 KB) is about 1.25� and 1.50� respectively, which
is almost consistent with the equation 1þ the minimum chunk size

the expected chunk size

as discussed in Section 3.4.
Figs. 12c and 12d show the impact of applying different

minimum chunk sizes on the deduplication ratio and average

Fig. 11. Chunk-size distribution of the RC, GC, and FC approaches on
the four typical datasets.

Fig. 12. Chunking performance of FastCDC with the expected chunk
size of 8KB but different minimum chunk sizes on two different CPU
processors.
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generated chunk size of FastCDC. In general, deduplication
ratio declines with the increase of the minimum chunk size
applied in FastCDC, but not proportionally. For the metric of
the average generated chunk size in FastCDC, it is approxi-
mately equal to the summation of the expected chunk size
and the applied minimum chunk size. This means that the
MIN-4 KB solution has the average chunk size of 8+4=12 KB,
leading to fewer chunks for fingerprints indexing in dedupli-
cation systems. Note that the increased portion of the average
generated chunk size is not always equal to the size of the
applied minimum chunk size, because the Rabin hashes of
contents may not strictly follow the uniform distribution (as
described in Equation (3) in Section 3.4) on some datasets.In
addition, the average chunk sizes of dataset LNX are smaller
than the minimum chunk size, which results from the many
very small files whose sizes are much smaller than the mini-
mum chunk size in LNX.

In summary, the results shown in Fig. 12 suggest that
cut-point skipping helps obtain higher chunking speed and
increase the average chunk size but at the cost of decreased
deduplication ratio. The decreased deduplication ratio will
be addressed by normalized chunking as evaluated in the
next two subsections.

4.4 Evaluation of Normalized Chunking

In this subsection, we conduct a sensitivity study of normal-
ized chunking (NC) on the TAR dataset, as shown in
Fig. 13. Here the expected chunk size of FastCDC without
NC is 8 KB and the normalized chunk size of FastCDC with
NC is configured as the 4 KB + minimum chunk size. The
normalization levels 1, 2, 3 refer to the three pairs of num-
bers of effective mask bits (14, 12), (15, 11), (16, 10) respec-
tively that normalized chunking applies when the chunking
position is smaller or larger than the normalized (or
expected) chunk size, as discussed in Section 3.5.

Figs. 13a and 13b suggest that normalized chunking (NC)
detects more duplicates when the minimum chunk size is
about 4, 6, and 8 KB but slightly reduces the average gener-
ated chunk size, in comparison with FastCDC without NC.
This is because NC reduces the number of large-sized

chunks as shown in Fig. 9 and discussed in Section 3.5. The
results also suggest that NC touches the “sweet spot” of
deduplication ratio at the normalization level of 2 when the
minimum chunk size is 4, 6, or 8 KB. This is because the
very high normalization levels tend to have a similar
chunk-size distribution to the Fixed-Size Chunking as
shown in Fig. 9 in Section 3.5, which fails to address the
boundary-shift problem and thus detects fewer duplicates.
Figs. 13c and 13d suggest that NC, when combined with the
approach of enlarging the minimum chunk size for cut-
point skipping, greatly increases the chunking speed on the
two tested processors.

In general, considering the three metrics of chunking
speed, average generated chunk size, and deduplication ratio
as a whole, as shown in Fig. 13, NC-2 with MinSize of 8 KB
maximizes the chunking speed without sacrificing the dedu-
plication ratio. Note that NC-2 with MinSize of 6 KB achieves
the highest deduplication ratio among those NC approaches
whose average chunk size	 that of Rabin and FastCDC tested
in Table 3 (with theminimum chunk size of 2 KB).

4.5 Comprehensive Evaluation of FastCDC

In this subsection, we comprehensively evaluate the perfor-
mance of FastCDC with the combined capability of the five
key techniques: Gear-based rolling hash, optimizing hash
judgment, cut-point skipping, rolling two bytes each time,
and normalized chunking using “NC-2” and minimum
chunk size of 6 KB/8 KB as suggested by the last subsection.
Finally, twelve CDC approaches are tested for evaluation:

� RC-v1 (or RC-MIN-2 KB) is Rabin-based CDC used
in LBFS [6]; RC-v2 and RC-v3 refer to Rabin-based
CDC using normalized chunking with a minimum
chunk size of 4 and 6 KB respectively.

� FC-v1 is FastCDC uses the techniques of optimizing
hash judgment and cut-point skipping with a mini-
mum chunk size of 2 KB; FC-v2 and FC-v3 refer to
FastCDC using all the four techniques with a mini-
mum chunk size of 6 and 8 KB, respectively.

� FC’-v1, FC’-v2, and FC’-v3 are FastCDC using the
technique of rolling two bytes each time on top of
FC-v1, FC-v2, and FC-v3 respectively.

� AE-v1 and AE-v2 refer to AE-based CDC [24] and its
optimized version [52];

� Fixed-Size Chunking (FIXC) is also tested for com-
parison using the average chunk size of 10 KB (to
better understand content-defined chunking).

Evaluation results in Table 4 suggest that FC-v1, FC-v2,
AE-v2, and RC-v2 achieves nearly the same deduplication
ratio as RC-v1 in most cases, which suggests that the nor-
malized chunking scheme works well on both Rabin and
FastCDC. Note that FIXC works well on the datasets LNX
and VMB, because LNX has many files smaller than the
fixed-size chunk of 10 KB (and thus the average generated
chunk size is also smaller than 10 KB) and VMB has many
structured backup data (and thus VMB is suitable for FIXC).

Table 5 shows that RC-v1, RC-v2, AE-v1, AE-v2, FC-v1,
and FC-v2 generate similar average chunk size. But the
approaches of RC-v3 and FC-v3 has a much larger average
chunk size, which means that it generates fewer chunks and
thus lessmetadata for deduplication processing.Meanwhile,

Fig. 13. Evaluation of comprehensive performance of normalized chunk-
ing with different normalization levels.
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RC-v3 and FC-v3 still achieves a comparable deduplication
ratio, slightly lower than RC-v1 as shown in Table 4, while
providing amuch higher chunking speed as discussed later.

Fig. 14 suggests that FC’-v3 has the highest chunking
speed, about 12� faster than the Rabin-based approach,
about 2.5� faster than FC-v1. This is because FC’-v3 is the
final FastCDC using all the five techniques to speed up the
CDC process. In addition, FC’-v2 is also a good CDC candi-
date since it has a comparable deduplication ratio while
also working well on the other two metrics of chunking
speed and average generated chunk size. Meanwhile, nor-
malized chunking also helps accelerate Rabin-based CDC
(i.e., RC-v2 and RC-v3) while achieving comparable dedu-
plication ratio and average chunk size. But this acceleration
is limited since the main bottleneck for Rabin-based CDC is
still the rolling hashing computation.

Table 6 further studies the CPU overhead among the eight
CDC approaches. The CPU overhead is averaged on 1,000
test runs by the Linux tool “Perf”. The results suggest that
FC’-v3 has the fewest instructions for CDC computation, the
higher instructions per cycle (IPC), and thus the least CPU
time overhead, i.e., CPU cycles. Generally, FastCDC greatly
reduces the number of instructions for CDC computation by
using the techniques of Gear-based hashing, optimizing
hash judgment, and rolling two bytes each time (i.e., FC’-v1),
and then minimizes the number of computation instructions
by enlarging the minimum chunk size for cut-point skipping
and combining normalized chunking (i.e., FC’-v2 and FC’-
v3). In addition, FastCDC increases the IPC for the CDC com-
putation by well pipelining the instructions of hashing and
hash-judging tasks in up-to-date processors. Therefore, these
results clearly reveal the reason why FastCDC is much faster
than Rabin- and AE-based CDC is that the former not only
reduces the number of instructions and branches, but also
increases the IPC for the CDC process.

TABLE 4
Comparison of Deduplication Ratio Achieved by the Nine Chunking Approaches

Dataset FIXC RC-v1 RC-v2 RC-v3 AE-v1 AE-v2 FC-v1 FC-v2 FC-v3

TAR 15.77% 46.66% 47.42% 45.37% 43.62% 46.41% 46.65% 47.39% 45.40%
LNX 95.68% 96.30% 96.28% 96.19% 96.25% 96.13% 96.31% 96.28% 96.19%
WEB 59.96% 75.98% 83.16% 80.39% 83.08% 83.18% 83.20% 83.29% 80.92%
VMA 17.63% 36.70% 37.79% 36.52% 38.10% 38.17% 36.40% 37.66% 36.39%
VMB 95.68% 96.12% 96.17% 96.11% 95.82% 96.15% 96.08% 96.17% 96.11%
RDB 16.39% 92.57% 92.96% 92.24% 88.82% 92.83% 92.58% 92.97% 92.23%
SYN 79.46% 97.36% 97.91% 97.67% 97.54% 97.86% 97.37% 97.90% 97.67%

TABLE 5
Average Chunk Size Generated by the Nine Chunking Approaches on the Seven Datasets

Dataset FIXC RC-v1 RC-v2 RC-v3 AE-v1 AE-v2 FC-v1 FC-v2 FC-v3

TAR 10239 12449 12664 14772 12187 12200 12334 12801 14918
LNX 6508 6021 7041 7636 6274 6162 6012 7042 7636
WEB 10240 11301 12174 14148 11977 11439 11552 11880 13951
VMA 10239 13071 13505 15628 13098 13559 13150 13595 15746
VMB 10239 11937 12970 15094 12303 12254 12138 13034 15166
RDB 10239 10964 12587 14728 11943 12102 10970 12583 14725
SYN 10240 11663 12221 14271 11956 11997 11598 12239 14289

Fig. 14. Chunking speed of the 11 CDC approaches.

TABLE 6
Number of Instructions, Instructions Per Cycle (IPC), and CPU

Cycles Required to Chunk Data Per Byte by the 11 CDC
Approaches on the Intel i7-8770 Processor

Approaches Instructions IPC CPU cycles branches

RC-v1 19.54 2.49 7.85 2.44
RC-v2 11.22 2.30 4.88 1.02
RC-v3 9.72 2.27 4.28 0.88
AE-v1 11.75 3.77 3.12 3.84
AE-v2 7.00 3.08 2.27 2.00
FC-v1 7.32 3.89 1.88 1.63
FC-v2 4.89 3.83 1.28 1.02
FC-v3 4.23 3.72 1.14 0.88
FC’-v1 5.28 3.87 1.36 1.13
FC’-v2 3.57 3.59 0.99 0.76
FC’-v3 3.09 3.47 0.89 0.66
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In summary, as shown in Tables 4, 5, 6 and Fig. 14,
FastCDC (i.e., FC’-v2 recommended) significantly speeds
up the Content-Defined Chunking process and achieves a com-
parable and even higher deduplication ratio with the similar
average chunk size by using a combination of the five key
techniques proposed in Section 3.

4.6 Impact of CDC on Overall System Throughput

To understand the impact of the different CDC algorithms on
the overall throughput of data deduplication system, we
implemented them in the open-source Destor deduplication
system [19]. In this evaluation, we use a Ramdisk-driven
emulation to avoid the performance bottleneck caused by
disk I/O. And for each dataset, we only use 5 GB, a small part
of its total size in the evaluation. In addition, to examine the
maximum impact of different CDC algorithms on the system
throughput, we configure Destor with: (1) using the fast intel
ISA-L library for SHA1 computation [53] (SHA1 speedwould
be about 3-4 GB/s on our tested CPUs); (2) indexing all fin-
gerprints in RAM; (3) pipelining the deduplication subtasks
(i.e., chunking, fingerprinting, indexing, etc.).

Fig. 15 shows that FastCDC (i.e., FC’-v2) helps achieve
about 1.2-3.0X higher overall system throughout than RC-
v1, RC-v2, AE-v1, and AE-v2, while achieving a comparable
or even higher deduplication ratio as shown in Table 4. This
is because when Destor pipelines the deduplication sub-
tasks and the CDC becomes the bottleneck of the system,
acceleration of the CDC can directly benefit the overall sys-
tem throughput before the system meets another perfor-
mance bottleneck.

5 CONCLUSION

In this paper, we propose FastCDC, a much faster CDC
approach for data deduplication than the state-of-the-art
CDC approaches while achieving a comparable deduplica-
tion ratio. The main idea behind FastCDC is the combined
use of five key techniques, namely, Gear-based fast rolling
hashing, optimizing the hash judgment for chunking, sub-
minimum chunk cut-point skipping, normalized chunking,

and rolling two bytes each time. Our experimental evalua-
tion demonstrates that FastCDC obtains a chunking speed
that is about 3-12� higher than that of the state-of-the-art
CDC approaches while achieving nearly the same dedupli-
cation ratio as the classic Rabin-based CDC. In addition, our
study of overall system throughput shows that Destor [19]
using FastCDC helps achieve about 1.2-3.0X higher overall
system throughout than using other CDC approaches.

FastCDC has been adopted as the default chunker in sev-
eral Github projects (for quickly detecting duplicate con-
tents), such as Rdedup [20], Content Blockchain [21], etc.
We have also released the FastCDC source code at https://
github.com/Borelset/destor/tree/master/src/chunkingto
be shared with the deduplication and storage systems
research community.
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