
Lock-free Concurrent Level Hashing for
Persistent Memory

Zhangyu Chen, Yu Hua, Bo Ding, Pengfei Zuo

Huazhong University of Science and Technology

USENIX ATC 2020

Persistent Memory (PM)

2

PM features
−Non-volatility

− Large capacity

PM speedups storage systems
− TB-scale memory for applications

− Instant recovery from system failures Intel Optane DC Persistent Memory
512 GB per module at most

DIMM compatible

−Byte-addressability

−DRAM-scale latency

PM Optimization

3

1. High overhead for writes

−Limited endurance

−Low write bandwidth of PM (Optane PM study in FAST ’20)

•1/6 DRAM

•1/3 read bandwidth of PM

PM Optimization

4

1. High overhead for writes

2. Inconsistency due to non-volatility
−Partial update: Copy-on-Write (CoW) or logging

CPU

CacheVolatile

Persistent

B
u

s

Partial update

PM Optimization

4

1. High overhead for writes

2. Inconsistency due to non-volatility
−Partial update: Copy-on-Write (CoW) or logging

CPU

CacheVolatile

Persistent

B
u

s

Partial update

data (32 B)

PM Optimization

4

1. High overhead for writes

2. Inconsistency due to non-volatility
−Partial update: Copy-on-Write (CoW) or logging

CPU

CacheVolatile

Persistent

B
u

s8-byte
atomic write

Partial update

PM Optimization

4

1. High overhead for writes

2. Inconsistency due to non-volatility
−Partial update: Copy-on-Write (CoW) or logging

CPU

CacheVolatile

Persistent

B
u

s

Partial update

PM Optimization

4

1. High overhead for writes

2. Inconsistency due to non-volatility
−Partial update: Copy-on-Write (CoW) or logging

CPU

CacheVolatile

Persistent

B
u

s

Inconsistency

Partial update

PM Optimization

4

1. High overhead for writes

2. Inconsistency due to non-volatility
−Partial update: Copy-on-Write (CoW) or logging

CPU

CacheVolatile

Persistent

B
u

s

Inconsistency

CPU

Cache

clwb
sfenceB

u
s

Partial update

PM Optimization

4

1. High overhead for writes

2. Inconsistency due to non-volatility
−Partial update: Copy-on-Write (CoW) or logging

CPU

CacheVolatile

Persistent

B
u

s

Inconsistency

CPU

Cache

clwb
sfenceB

u
s

Partial update

PM Optimization

4

1. High overhead for writes

2. Inconsistency due to non-volatility
−Partial update: Copy-on-Write (CoW) or logging

CPU

CacheVolatile

Persistent

B
u

s

Inconsistency

CPU

Cache

clwb
sfenceB

u
s

Partial update

PM Optimization

4

1. High overhead for writes

2. Inconsistency due to non-volatility
−Partial update: Copy-on-Write (CoW) or logging

CPU

CacheVolatile

Persistent

B
u

s

Inconsistency

CPU

Cache

clwb
sfenceB

u
s

2x writes!Partial update

PM Optimization

5

1. High overhead for writes

2. Inconsistency due to non-volatility
−Partial update: Copy-on-Write (CoW) or logging

−Reordering: memory fences

CPU

Cache

B
u

s

slotsProgram order

slots

PM Optimization

5

1. High overhead for writes

2. Inconsistency due to non-volatility
−Partial update: Copy-on-Write (CoW) or logging

−Reordering: memory fences

CPU

Cache

B
u

skv_t item = new kv_t(k, v);

slots[0] = &item;

slotsitemProgram order

slots

slots

PM Optimization

5

1. High overhead for writes

2. Inconsistency due to non-volatility
−Partial update: Copy-on-Write (CoW) or logging

−Reordering: memory fences

CPU

Cache

B
u

skv_t item = new kv_t(k, v);

slots[0] = &item;

slotsitem

Cache Reordering

Program order

slotsslots

slots

PM Optimization

5

1. High overhead for writes

2. Inconsistency due to non-volatility
−Partial update: Copy-on-Write (CoW) or logging

−Reordering: memory fences

CPU

Cache

B
u

skv_t item = new kv_t(k, v);

slots[0] = &item;
Cache Reordering

Program order

slotsslots
Inconsistency

PM Optimization

5

1. High overhead for writes

2. Inconsistency due to non-volatility
−Partial update: Copy-on-Write (CoW) or logging

−Reordering: memory fences

CPU

Cache

B
u

skv_t item = new kv_t(k, v);

slots[0] = &item;

Program order

slotsslots
Inconsistency

clwb(item);
sfence;

PM Index Structures

6

PM index structures are important for large-scale storage

systems to provide fast queries

• Hashing-based structures• Tree-based structures

PM Index Structures

6

PM index structures are important for large-scale storage

systems to provide fast queries

• Hashing-based structures• Tree-based structures
key

PM Index Structures

6

PM index structures are important for large-scale storage

systems to provide fast queries

• Hashing-based structures• Tree-based structures

Hash(key)

O(1) time complexity for point query

keykey

PM Index Structures

6

PM index structures are important for large-scale storage

systems to provide fast queries

• Hashing-based structures• Tree-based structures

Hash(key)

O(1) time complexity for point query

keykey

Hashing Collisions and Resizing

7

Hash collisions

x

Hash(y)

y

Collision

Hashing Collisions and Resizing

7

Hash collisions

x y

Linear probing

probing distance

Hashing Collisions and Resizing

7

Hash collisions

x y

Linear probing

x

y

Linked list

probing distance

Hashing Collisions and Resizing

7

Hash collisions

Resizing

Old hash table

x y

Linear probing

x

y

Linked list

probing distance

Hashing Collisions and Resizing

7

Hash collisions

Resizing

Old hash table New hash table

Rehashing

x y

Linear probing

x

y

Linked list

probing distance

High latency!

Concurrent PM Hashing

8

The importance of concurrency

−Fast indexing for TB-scale PM data

−Multi-core environment for servers equipped with Optane PM

Concurrency for PM hashing

−Concurrent queries with correctness

•Multi-reader concurrency

•Multi-writer concurrency

−Concurrent resizing

Writers Readers

Concurrent resizing

PM Variants of Concurrent Hashing

9

CCEH [FAST ’19]

112102012002

..
.

..
.

Bucket 0

Bucket 1

Bucket 254

Bucket 255

Bucket 0

Bucket 1

Bucket 254

Bucket 255

Segment 0 Segment 1

Directory

PM Variants of Concurrent Hashing

9

CCEH [FAST ’19]
− Segment reader/writer locks for queries

112102012002

..
.

..
.

Bucket 0

Bucket 1

Bucket 254

Bucket 255

Bucket 0

Bucket 1

Bucket 254

Bucket 255

Segment 0 Segment 1

Directory

PM Variants of Concurrent Hashing

9

CCEH [FAST ’19]
− Segment reader/writer locks for queries

− Dynamic resizing with segment splitting

and directory doubling

112102012002

..
.

..
.

Bucket 0

Bucket 1

Bucket 254

Bucket 255

Bucket 0

Bucket 1

Bucket 254

Bucket 255

Segment 0 Segment 1

Directory

Coarse-grained locks!

PM Variants of Concurrent Hashing

9

CCEH [FAST ’19]
− Segment reader/writer locks for queries

− Dynamic resizing with segment splitting

and directory doubling

P-CLHT [SOSP ’19]

112102012002

..
.

..
.

Bucket 0

Bucket 1

Bucket 254

Bucket 255

Bucket 0

Bucket 1

Bucket 254

Bucket 255

Segment 0 Segment 1

Directory

Coarse-grained locks!

PM Variants of Concurrent Hashing

9

CCEH [FAST ’19]
− Segment reader/writer locks for queries

− Dynamic resizing with segment splitting

and directory doubling

P-CLHT [SOSP ’19]
− Lock-free search and bucket lock for writes

112102012002

..
.

..
.

Bucket 0

Bucket 1

Bucket 254

Bucket 255

Bucket 0

Bucket 1

Bucket 254

Bucket 255

Segment 0 Segment 1

Directory

Coarse-grained locks!

PM Variants of Concurrent Hashing

9

CCEH [FAST ’19]
− Segment reader/writer locks for queries

− Dynamic resizing with segment splitting

and directory doubling

P-CLHT [SOSP ’19]
− Lock-free search and bucket lock for writes

− Full-table resizing with one helper thread

112102012002

..
.

..
.

Bucket 0

Bucket 1

Bucket 254

Bucket 255

Bucket 0

Bucket 1

Bucket 254

Bucket 255

Segment 0 Segment 1

Directory

Thread-1: resize Thread-2: help resizing

Thread-3~n: wait for finishing resizing…

Coarse-grained locks!

PM Variants of Concurrent Hashing

9

CCEH [FAST ’19]
− Segment reader/writer locks for queries

− Dynamic resizing with segment splitting

and directory doubling

P-CLHT [SOSP ’19]
− Lock-free search and bucket lock for writes

− Full-table resizing with one helper thread

112102012002

..
.

..
.

Bucket 0

Bucket 1

Bucket 254

Bucket 255

Bucket 0

Bucket 1

Bucket 254

Bucket 255

Segment 0 Segment 1

Directory

Thread-1: resize Thread-2: help resizing

Thread-3~n: wait for finishing resizing…

Coarse-grained locks!

Resizing blocks queries!

...
0 1 2N-2 2N-1

Level Hashing [OSDI ’18]

10

PM-friendly hashing index

...
0 N-1

Top level

Bottom level

...
0 1 2N-2 2N-1

Level Hashing [OSDI ’18]

10

PM-friendly hashing index
− Two-level bucketized hash table with one-

step movement

Two-level structure

...
0 N-1

Top level

Bottom level

...
0 1 2N-2 2N-1

Level Hashing [OSDI ’18]

10

PM-friendly hashing index
− Two-level bucketized hash table with one-

step movement

Two-level structure

KV1
KV2
KV3
KV4

Slots

Tokens

A 4-slot bucket

...
0 N-1

Top level

Bottom level

...
0 1 2N-2 2N-1

Level Hashing [OSDI ’18]

10

PM-friendly hashing index
− Two-level bucketized hash table with one-

step movement

key
h1(key) h2(key)

Two-level structure

KV1
KV2
KV3
KV4

Slots

Tokens

A 4-slot bucket

One-step movement

One extra write at most
...

0 N-1

Top level

Bottom level

...
0 1 2N-2 2N-1

Level Hashing [OSDI ’18]

10

PM-friendly hashing index
− Two-level bucketized hash table with one-

step movement
 Write efficiency

key
h1(key) h2(key)

Two-level structure

KV1
KV2
KV3
KV4

Slots

Tokens

A 4-slot bucket

One-step movement

One extra write at most
...

0 N-1

Top level

Bottom level

...
0 1 2N-2 2N-1

Level Hashing [OSDI ’18]

10

PM-friendly hashing index
− Two-level bucketized hash table with one-

step movement

− Low-overhead consistency guarantee via

atomic token update

 Write efficiency

 Crash consistency

key
h1(key) h2(key)

Two-level structure

KV1
KV2
KV3
KV4

Slots

Tokens

A 4-slot bucket

One-step movement

(Atomic update)

One extra write at most
...

0 N-1

Top level

Bottom level

...
0 1 2N-2 2N-1

Level Hashing [OSDI ’18]

10

PM-friendly hashing index
− Two-level bucketized hash table with one-

step movement

− Low-overhead consistency guarantee via

atomic token update

−Rehashing 1/3 buckets for one resizing

 Write efficiency

 Crash consistency

...
0 N-1

Top level

Bottom level

...
1 2 4N-3 4N-14N-20

...
0 1 2N-2 2N-1

Level Hashing [OSDI ’18]

10

PM-friendly hashing index
− Two-level bucketized hash table with one-

step movement

− Low-overhead consistency guarantee via

atomic token update

−Rehashing 1/3 buckets for one resizing

 Write efficiency

 Crash consistency

Top level

Bottom level

...

0 1 2N-2 2N-1

Concurrency in Level Hashing

11

Slot-grained lock for queries

Top level

Bottom level

Single-thread blocking resizing

...
0 1 2N-2 2N-1

...
0 N-1

Top level

Bottom level
0 N-1

...

x

Thread-1: search(x) Thread-2: insert(key)

...

0 1 2N-2 2N-1

Concurrency in Level Hashing

11

Slot-grained lock for queries

Thread-2: relocate x

Top level

Bottom level

Single-thread blocking resizing

...
0 1 2N-2 2N-1

...
0 N-1

Top level

Bottom level
0 N-1

...

x

Thread-1: search x

Thread-1: search(x) Thread-2: insert(key)

...

0 1 2N-2 2N-1

Concurrency in Level Hashing

11

Slot-grained lock for queries

Thread-2: relocate x

Top level

Bottom level

Single-thread blocking resizing

...
0 1 2N-2 2N-1

...
0 N-1

Top level

Bottom level
0 N-1

...

x

Thread-1: search x

Missing inserted items!

No “x” is found

Thread-1: search(x) Thread-2: insert(key)

...

0 1 2N-2 2N-1

Concurrency in Level Hashing

11

Slot-grained lock for queries

Thread-2: relocate x

Top level

Bottom level

Single-thread blocking resizing

...
1 2 4N-3 4N-14N-20

...
0 1 2N-2 2N-1

...
0 N-1

Top level

Bottom level
0 N-1

...

x

Thread-1: search x

Missing inserted items!

No “x” is found

Thread-1: search(x) Thread-2: insert(key)

Thread-1: insert(key) and trigger resizing…

...

0 1 2N-2 2N-1

Concurrency in Level Hashing

11

Slot-grained lock for queries

Thread-2: relocate x

Top level

Bottom level

Single-thread blocking resizing

...
1 2 4N-3 4N-14N-20

...
0 1 2N-2 2N-1

...
0 N-1

Top level

Bottom level
0 N-1

...

x

Thread-1: search x

Missing inserted items!

No “x” is found

Thread-1: search(x) Thread-2: insert(key)

Thread-1: insert(key) and trigger resizing…

Thread-2~n: wait for finishing resizing…

Resizing blocks queries!

...

0 1 2N-2 2N-1

Concurrency in Level Hashing

11

Slot-grained lock for queries

Thread-2: relocate x

Top level

Bottom level

Single-thread blocking resizing

...
1 2 4N-3 4N-14N-20

...
0 1 2N-2 2N-1

...
0 N-1

Top level

Bottom level
0 N-1

...

x

Thread-1: search x

Missing inserted items!

No “x” is found

Thread-1: search(x) Thread-2: insert(key)

Thread-1: insert(key) and trigger resizing…

Thread-2~n: wait for finishing resizing…

Resizing blocks queries!

Concurrency is the bottleneck

Challenges for PM Hashing

12

Challenges

−Performance degradation for blocking resizing

• High latency for coarse-grained locks

−Limited scalability for lock-based concurrency control

• Lock constraint for concurrent accesses

• Persisting overheads in the critical path

Design goals

−A PM-friendly and high-concurrency hashing scheme

Our Approach: Clevel Hashing

13

Rehashing threads

...

Worker threads

...Thread-local
context ptr.

A thread

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1

Rehashing

key
H1(key) H2(key)

Le
v

el
 l

is
t

last_level

first_level

is_resizing
Context

Global context ptr.

Our Approach: Clevel Hashing

13

Dynamic multi-level structure w/o

extra writes for insertion

Write-optimal insertion

Rehashing threads

...

Worker threads

...Thread-local
context ptr.

A thread

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1

Rehashing

key
H1(key) H2(key)

Le
v

el
 l

is
t

last_level

first_level

is_resizing
Context

Global context ptr.

Our Approach: Clevel Hashing

13

Dynamic multi-level structure w/o

extra writes for insertion

Write-optimal insertion

Asynchronous rehashing w/o

blocking concurrent queries

Non-blocking resizing

Rehashing threads

...

Worker threads

...Thread-local
context ptr.

A thread

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1

Rehashing

key
H1(key) H2(key)

Le
v

el
 l

is
t

last_level

first_level

is_resizing
Context

Global context ptr.

Our Approach: Clevel Hashing

13

Dynamic multi-level structure w/o

extra writes for insertion

Write-optimal insertion

Asynchronous rehashing w/o

blocking concurrent queries

Non-blocking resizing

 Lock-free concurrency control

Lock-free queries

Rehashing threads

...

Worker threads

...Thread-local
context ptr.

A thread

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1

Rehashing

key
H1(key) H2(key)

Le
v

el
 l

is
t

last_level

first_level

is_resizing
Context

Global context ptr.

Components

14

Dynamic Multi-level Structure

Non-blocking Resizing

Lock-free Concurrency Control

Components

15

Dynamic Multi-level Structure

Non-blocking Resizing

Lock-free Concurrency Control

Dynamic Multi-level Structure

16

Support for variable-length items

−Store pointers in slots and actual items outside of the table

Dynamic Multi-level Structure

17

Support for variable-length items

Write-optimized hash table

−8 slots per bucket ...

KV_PTR1

Slots (each 8 bytes)

A bucket
KV_PTR8...

Dynamic Multi-level Structure

18

Support for variable-length items

Write-optimized hash table

−8 slots per bucket

−2 candidate buckets in one level

...

H1(key) H2(key)
key

Dynamic Multi-level Structure

19

Support for variable-length items

Write-optimized hash table

−8 slots per bucket

−2 candidate buckets in one level

−Sharing-based multiple levels

•Add a level for resizing

•Remove one when rehashing completes ...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

H1(key) H2(key)
key

Dynamic Multi-level Structure

19

Support for variable-length items

Write-optimized hash table

−8 slots per bucket

−2 candidate buckets in one level

−Sharing-based multiple levels

•Add a level for resizing

•Remove one when rehashing completes ...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

H1(key) H2(key)
key

No extra writes for insertion Write-optimal

Components

20

Dynamic Multi-level Structure

Non-blocking Resizing

Lock-free Concurrency Control

The Support for Concurrent Resizing

21

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

key
H1(key) H2(key)

The Support for Concurrent Resizing

21

Level list
−A linked list to associate levels

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

key
H1(key) H2(key)

...

Le
ve

l l
is

t

The Support for Concurrent Resizing

22

Level list

−A linked list to associate levels

Context

−A metadata structure including:

• first_level (the largest level)

• last_level

• is_resizing

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

key
H1(key) H2(key)

Le
v

el
 li

st

last_level

first_level

is_resizing

Context

Global context ptr.

Non-blocking Resizing

23

Resizing steps
1. Make a local copy of the global context pointer

Worker threads

...Thread-local
context ptr.

A thread

1

...

...
N-1N-20 1 ...

...

key
H1(key) H2(key)

last_level

first_level

is_resizing

Le
v

el
 l

is
t

Context

Global context ptr.

Non-blocking Resizing

24

Resizing steps
1. Make a local copy of the global context pointer

2. CAS to append a new level

Worker threads

...Thread-local
context ptr.

A thread

1

...

...
N-1N-20 1

last_level

first_level

is_resizing

Le
v

el
 l

is
t

Context

Global context ptr.

...
2N-12N-22N-30 1 2

key
H1(key) H2(key)

2

Non-blocking Resizing

25

Resizing steps
1. Make a local copy of the global context pointer

2. CAS to append a new level

3. CoW + CAS to update the first_level

Worker threads

...Thread-local
context ptr.

A thread

1

...

...
N-1N-20 1

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

key
H1(key) H2(key)

2

last_level

first_level

is_resizing

Global context ptr.

3
Context

Context size: 17 bytes

last_level

first_level

is_resizing

8 B

8 B

1 B
Lightweight CoW

Non-blocking Resizing

26

Resizing steps
1. Make a local copy of the global context pointer

2. CAS to append a new level

3. CoW + CAS to update the first_level

4. Rehash items in the last level

Worker threads

...Thread-local
context ptr.

A thread

1

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1

Rehashing

key
H1(key) H2(key)

Le
ve

l l
is

t

2

4

last_level

first_level

is_resizing

Global context ptr.

3
Context

Non-blocking Resizing

27

Resizing steps
1. Make a local copy of the global context pointer

2. CAS to append a new level

3. CoW + CAS to update the first_level

4. Rehash items in the last level

5. CoW + CAS to update the last_level

Worker threads

...Thread-local
context ptr.

A thread

1

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1

Rehashing

key
H1(key) H2(key)

Le
ve

l l
is

t

last_level

first_level

is_resizing
Context

Global context ptr.

2

3

4

5

Rehashing threads

...

Worker threads

...

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1

Rehashing

key
H1(key) H2(key)

Le
ve

l l
is

t

last_level

first_level

is_resizing

Context

Global context ptr.

Non-blocking Resizing

28

Resizing steps
1. Make a local copy of the global context pointer

2. CAS to append a new level

3. CoW + CAS to update the first_level

4. Rehash items in the last level

5. CoW + CAS to update the last_level

Rehashing threads

...

Worker threads

...

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1

Rehashing

key
H1(key) H2(key)

Le
ve

l l
is

t

last_level

first_level

is_resizing

Context

Global context ptr.

Non-blocking Resizing

28

Resizing steps
1. Make a local copy of the global context pointer

2. CAS to append a new level

3. CoW + CAS to update the first_level

4. Rehash items in the last level

5. CoW + CAS to update the last_level

Expansion
stage

Rehashing
stage

Expansion stage Rehashing stage
Resizing steps

Queries

Rehashing threads

...

Worker threads

...

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1

Rehashing

key
H1(key) H2(key)

Le
ve

l l
is

t

last_level

first_level

is_resizing

Context

Global context ptr.

Non-blocking Resizing

28

Resizing steps
1. Make a local copy of the global context pointer

2. CAS to append a new level

3. CoW + CAS to update the first_level

4. Rehash items in the last level

5. CoW + CAS to update the last_level

Non-blocking resizing scheme
− Rehashing threads: rehash until there are 2

levels left

Expansion
stage

Rehashing
stage

Expansion stage Rehashing stage

Rehashing threads (background)

Resizing steps

Queries

Rehashing threads

...

Worker threads

...

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1

Rehashing

key
H1(key) H2(key)

Le
ve

l l
is

t

last_level

first_level

is_resizing

Context

Global context ptr.

Non-blocking Resizing

28

Resizing steps
1. Make a local copy of the global context pointer

2. CAS to append a new level

3. CoW + CAS to update the first_level

4. Rehash items in the last level

5. CoW + CAS to update the last_level

Non-blocking resizing scheme
− Rehashing threads: rehash until there are 2

levels left

Expansion
stage

Rehashing
stage

Expansion stage Rehashing stage

Rehashing threads (background)

Resizing steps

Worker threads

Queries

Components

29

Dynamic Multi-level Structure

Non-blocking Resizing

Lock-free Concurrency Control

Lock-free Search

30

High latency for pointer dereference

Lock-free Search

30

High latency for pointer dereference

−Summary tags

• A tag is the summary for a key

• Leverage the unused 16 highest bits of

a pointer in x86_64 to store the tag
Update tag and pointer in an atomic manner

Tag (2 B)

KV_PTR1A bucket KV_PTR8...

A slot

Lock-free Search

31

High latency for pointer dereference

−Summary tags

• A tag is the summary for a key

• Leverage the unused 16 highest bits of

a pointer in x86_64 to store the tag

Missing items due to rehashing
...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

key
H1(key) H2(key)

Le
v

el
 l

is
t

...

: a pointer in one slot

Lock-free Search

31

High latency for pointer dereference

−Summary tags

• A tag is the summary for a key

• Leverage the unused 16 highest bits of

a pointer in x86_64 to store the tag

Missing items due to rehashing
...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

key
H1(key) H2(key)

Le
v

el
 l

is
t

Thread-2: rehashing

Thread-1: search

...
2N-12N-22N-30 1 2

Missing

: a pointer in one slot

Lock-free Search

31

High latency for pointer dereference

−Summary tags

• A tag is the summary for a key

• Leverage the unused 16 highest bits of

a pointer in x86_64 to store the tag

Missing items due to rehashing

−Bottom-to-top (b2t) search

• Search from the last level to the first level

• Redo the search when no item is found and the context changes

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

key
H1(key) H2(key)

Le
v

el
 l

is
t

Thread-2: rehashing
Thread-1: b2t search

...
2N-12N-22N-30 1 2

: a pointer in one slot

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Insertion

32

Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Insertion

32

Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS

Duplicate items from concurrent insertions
xH1(x) H2(x)

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Insertion

32

Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS

Duplicate items from concurrent insertions
−Both items are allowed for read

− Fix duplication in future update and deletion

Thread-1:
insert(x)

Thread-2:
insert(x)

...

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Insertion

32

Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS

Duplicate items from concurrent insertions
−Both items are allowed for read

− Fix duplication in future update and deletion

 Loss of new items due to rehashing

Thread-1:
insert(x)

Thread-2:
rehashing

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Insertion

32

Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS

Duplicate items from concurrent insertions
−Both items are allowed for read

− Fix duplication in future update and deletion

 Loss of new items due to rehashing

Thread-1:
insert(x)

Thread-2:
rehashing

......

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Insertion

32

Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS

Duplicate items from concurrent insertions
−Both items are allowed for read

− Fix duplication in future update and deletion

 Loss of new items due to rehashing

Thread-1:
insert(x)

Thread-2:
rehashing

......

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Insertion

32

Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS

Duplicate items from concurrent insertions
−Both items are allowed for read

− Fix duplication in future update and deletion

 Loss of new items due to rehashing

Thread-1:
insert(x)

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Insertion

32

Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS

Duplicate items from concurrent insertions
−Both items are allowed for read

− Fix duplication in future update and deletion

 Loss of new items due to rehashing

Thread-1:
insert(x)

Loss

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Insertion

32

Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS

Duplicate items from concurrent insertions
−Both items are allowed for read

− Fix duplication in future update and deletion

 Loss of new items due to rehashing

−Context-aware insertion

• Not inserted to the rehashed last level

• Redo insertion for possible loss
Thread-1:
insert(x)

Loss

Lock-free Update

33

 Inconsistency for duplicate items

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Update

33

 Inconsistency for duplicate items

− Concurrent insertions with the same key

...
2N-12N-22N-30 1 2

Thread-1:
insert(x)

Thread-2:
insert(x)

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Update

33

 Inconsistency for duplicate items

− Concurrent insertions with the same key

− Retry of context-aware insertion

...
2N-12N-22N-30 1 2

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

...

Thread-1:
insert(x)

Thread-2:
insert(x)

Thread-1:
insert(x)

Thread-1:
redo insert(x)

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Update

33

 Inconsistency for duplicate items

− Concurrent insertions with the same key

− Retry of context-aware insertion

− Data movement for rehashing

...
2N-12N-22N-30 1 2

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

... ...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

...

Rehashing
thread

Thread-1:
insert(x)

Thread-2:
insert(x)

Thread-1:
insert(x)

Thread-1:
redo insert(x)

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Update

33

 Inconsistency for duplicate items

− Concurrent insertions with the same key

− Retry of context-aware insertion

− Data movement for rehashing

...
2N-12N-22N-30 1 2

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

... ...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

...

Rehashing
thread

Thread-1:
insert(x)

Thread-2:
insert(x)

Thread-1:
insert(x)

Thread-1:
redo insert(x)

Two pointers to different items

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Update

33

 Inconsistency for duplicate items

− Concurrent insertions with the same key

− Retry of context-aware insertion

− Data movement for rehashing

...
2N-12N-22N-30 1 2

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

... ...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

...

Rehashing
thread

Thread-1:
insert(x)

Thread-2:
insert(x)

Thread-1:
insert(x)

Thread-1:
redo insert(x)

Two pointers to different items Two pointers to the same item

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Update

33

 Inconsistency for duplicate items

− Concurrent insertions with the same key

− Retry of context-aware insertion

− Data movement for rehashing

...
2N-12N-22N-30 1 2

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

... ...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

...

Rehashing
thread

Thread-1:
insert(x)

Thread-2:
insert(x)

Thread-1:
insert(x)

Thread-1:
redo insert(x)

Two pointers to different items Two pointers to the same item

 Content-conscious Find
− B2t search to find two pointers to duplicate

items

B2t
search

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Update

33

 Inconsistency for duplicate items

− Concurrent insertions with the same key

− Retry of context-aware insertion

− Data movement for rehashing

...
2N-12N-22N-30 1 2

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

... ...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

...

Rehashing
thread

Thread-1:
insert(x)

Thread-2:
insert(x)

Thread-1:
insert(x)

Thread-1:
redo insert(x)

Two pointers to different items Two pointers to the same item

 Content-conscious Find
− B2t search to find two pointers to duplicate

items

− Check if two pointers refer to the same item

B2t
search

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Update

33

 Inconsistency for duplicate items

− Concurrent insertions with the same key

− Retry of context-aware insertion

− Data movement for rehashing

...
2N-12N-22N-30 1 2

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

Rehashing
thread

Thread-1:
insert(x)

Thread-2:
insert(x)

Thread-1:
redo insert(x)

Two pointers to different items Two pointers to the same item

 Content-conscious Find
− B2t search to find two pointers to duplicate

items

− Check if two pointers refer to the same item
• Yes: delete the first pointer matching the key

B2t
search

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

Lock-free Update

33

 Inconsistency for duplicate items

− Concurrent insertions with the same key

− Retry of context-aware insertion

− Data movement for rehashing

...
2N-12N-22N-30 1 2

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

Rehashing
thread

Thread-2:
insert(x)

Thread-1:
redo insert(x)

Two pointers to different items Two pointers to the same item

 Content-conscious Find
− B2t search to find two pointers to duplicate

items

− Check if two pointers refer to the same item
• Yes: delete the first pointer matching the key

• No: delete the first pointer and corresponding item

matching the key

B2t
search

...
2N-12N-22N-30 1 2

Failures of Lock-free Update

34

Update failures due to interleaved update and rehashing

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...

Timeline

Thread 1: update

Thread-2: rehashing

Failures of Lock-free Update

34

Update failures due to interleaved update and rehashing

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...

Timeline

Thread 1: update

Thread-2: rehashing

Find

Failures of Lock-free Update

34

Update failures due to interleaved update and rehashing

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

...

Timeline

Thread 1: update

Thread-2: rehashing

Find

copy

Rehashing

Failures of Lock-free Update

34

Update failures due to interleaved update and rehashing

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

Timeline

Thread 1: update

Thread-2: rehashing

Find update

copy

...

Failures of Lock-free Update

34

Update failures due to interleaved update and rehashing

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

Timeline

Thread 1: update

Thread-2: rehashing

Find update

copy delete

Failures of Lock-free Update

34

Update failures due to interleaved update and rehashing

Baseline: two-round Find for update

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

Timeline

Thread 1: update

Thread-2: rehashing

Find update

copy delete

Failures of Lock-free Update

34

Update failures due to interleaved update and rehashing

Baseline: two-round Find for update

Optimization: redo Find only

when simultaneously satisfying:
− Table is resizing

− The updated bucket is in the last level

− The bucket index is in one of

the processed regions of

rehashing threads

...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

...

Le
v

el
 l

is
t

...
2N-12N-22N-30 1 2

Timeline

Thread 1: update

Thread-2: rehashing

Find update

copy delete

Lock-free Deletion

35

Delete matched pointers atomically via CAS

Inconsistency due to duplicate items

−Instead of Find, delete all matched items in b2t search

Deletion failures due to interleaved deletion and rehashing

−Similar optimizations to avoid frequent re-execution of deletion

Crash Recovery

36

Crash consistency for lock-free Clevel hashing

−Persist after PM writes

−Persist dependent metadata after loading them

Recovery

−Rehashing resumes from the last processed bucket

Atomic visibility enables low-overhead crash consistency

Experimental Setup

37

Platform
− Intel Optane DC PMM configured in App Direct mode

− 36 threads in one NUMA node

− PMDK

Comparisons
− LEVEL: original level hashing [OSDI ’18]

− CCEH: lazy deletion version, default probing distance (16 slots) [FAST ’19]

− CMAP: concurrent_hash_map engine from Intel pmemkv

− P-CLHT: PM variant of CLHT converted by RECIPE [SOSP ’19]

− CLEVEL: our Clevel hashing

 Benchmark: YCSB

Load Factor

38

0 200 400 600 800 1000
0

20

40

60

80

100

L
o

a
d

 f
a

c
to

r
(%

)

Inserted items (k)

 P-CLHT CCEH

 LEVEL CLEVEL

Load Factor

38

 Clevel hashing has comparable load factor with level hashing, i.e., 86%

0 200 400 600 800 1000
0

20

40

60

80

100

L
o

a
d

 f
a

c
to

r
(%

)

Inserted items (k)

 P-CLHT CCEH

 LEVEL CLEVEL

Micro-benchmarks

39

Positive Negative

0

5

10

15

20

25

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

u
s
)

 P-CLHT LEVEL

 CCEH CMAP

 LEVEL-TBB CCEH-TBB

 CMAP-TBB CLEVEL

85794.02261

Insertion Update Deletion

0

10

20

30

40
4610186 57

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

u
s
)

 P-CLHT LEVEL

 CCEH CMAP

 LEVEL-TBB CCEH-TBB

 CMAP-TBB CLEVEL

106

* Lack of implementation of update and deletion
in open-source code

Micro-benchmarks

39

 Due to using lock-free search and

summary tags, Clevel hashing obtains

− 1.2×−5.0× speedup for positive search

− 1.4×−9.0× speedup for negative search

Positive Negative

0

5

10

15

20

25

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

u
s
)

 P-CLHT LEVEL

 CCEH CMAP

 LEVEL-TBB CCEH-TBB

 CMAP-TBB CLEVEL

85794.02261

Insertion Update Deletion

0

10

20

30

40
4610186 57

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

u
s
)

 P-CLHT LEVEL

 CCEH CMAP

 LEVEL-TBB CCEH-TBB

 CMAP-TBB CLEVEL

106

* Lack of implementation of update and deletion
in open-source code

Micro-benchmarks

39

 Due to using lock-free search and

summary tags, Clevel hashing obtains

− 1.2×−5.0× speedup for positive search

− 1.4×−9.0× speedup for negative search

Positive Negative

0

5

10

15

20

25

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

u
s
)

 P-CLHT LEVEL

 CCEH CMAP

 LEVEL-TBB CCEH-TBB

 CMAP-TBB CLEVEL

85794.02261

Insertion Update Deletion

0

10

20

30

40
4610186 57

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

u
s
)

 P-CLHT LEVEL

 CCEH CMAP

 LEVEL-TBB CCEH-TBB

 CMAP-TBB CLEVEL

106

* Lack of implementation of update and deletion
in open-source code

 Clevel hashing achieves low latency with

correctness guarantee

Macro-benchmarks

40

Read ratio (%): 0 50 95 100

Write ratio (%): 100 50 5 0

Load A A B C

0

1

2

3

4

5

1
.3

2
 M

 o
p

/s

1
.8

1
 M

 o
p

/s

0
.4

5
 M

 o
p

/s

T
h

ro
u

g
h

p
u

t
ra

ti
o

 w
rt

 P
-C

L
H

T

 P-CLHT LEVEL

 CCEH CMAP

 LEVEL-TBB CCEH-TBB

 CMAP-TBB CLEVEL

0
.9

1
 M

 o
p

/s

Macro-benchmarks

40

Read ratio (%): 0 50 95 100

Write ratio (%): 100 50 5 0

Load A A B C

0

1

2

3

4

5

1
.3

2
 M

 o
p

/s

1
.8

1
 M

 o
p

/s

0
.4

5
 M

 o
p

/s

T
h

ro
u

g
h

p
u

t
ra

ti
o

 w
rt

 P
-C

L
H

T

 P-CLHT LEVEL

 CCEH CMAP

 LEVEL-TBB CCEH-TBB

 CMAP-TBB CLEVEL

0
.9

1
 M

 o
p

/s

 Clevel hashing obtains up to 4.2× speedup than P-CLHT due to the lock-free concurrency

control and non-blocking resizing

4.2×

Conclusion

41

Existing PM hashing indexes have limited considerations for

concurrency

Clevel hashing is PM-friendly

−Write-optimal multi-level structure without extra writes for insertion

−Crash consistency by enabling lock-free index to be persistent

Clevel hashing achieves high concurrency

−Non-blocking resizing without blocking queries

− Lock-free concurrency control with correctness guarantee

Clevel hashing achieves up to 4.2× speedup for throughput than

P-CLHT

Thanks! Q&A

Email: chenzy@hust.edu.cn

Homepage: https://chenzhangyu.github.io

Open-source code: https://github.com/chenzhangyu/Clevel-Hashing

mailto:chenzy@hust.edu.cn
https://chenzhangyu.github.io/
https://github.com/chenzhangyu/Clevel-Hashing

