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Persistent Memory (PM)
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PM features
−Non-volatility

− Large capacity

PM speedups storage systems
− TB-scale memory for applications

− Instant recovery from system failures Intel Optane DC Persistent Memory
512 GB per module at most

DIMM compatible

−Byte-addressability

−DRAM-scale latency
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1. High overhead for writes

−Limited endurance

−Low write bandwidth of PM (Optane PM study in FAST ’20)

•1/6 DRAM

•1/3 read bandwidth of PM
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1. High overhead for writes

2. Inconsistency due to non-volatility
−Partial update: Copy-on-Write (CoW) or logging
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1. High overhead for writes

2. Inconsistency due to non-volatility
−Partial update: Copy-on-Write (CoW) or logging

−Reordering: memory fences
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1. High overhead for writes

2. Inconsistency due to non-volatility
−Partial update: Copy-on-Write (CoW) or logging

−Reordering: memory fences

CPU

Cache

B
u

skv_t item = new kv_t(k, v);

slots[0] = &item;

Program order

slotsslots
Inconsistency

clwb(item);
sfence;



PM Index Structures

6

PM index structures are important for large-scale storage 

systems to provide fast queries

• Hashing-based structures• Tree-based structures
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Hash collisions
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Collision
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Hash collisions

Resizing

Old hash table New hash table

Rehashing

x y

Linear probing

x

y

Linked list

probing distance 

High latency!
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The importance of concurrency

−Fast indexing for TB-scale PM data

−Multi-core environment for servers equipped with Optane PM

Concurrency for PM hashing

−Concurrent queries with correctness

•Multi-reader concurrency

•Multi-writer concurrency

−Concurrent resizing

Writers Readers

Concurrent resizing
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CCEH [FAST ’19]
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CCEH [FAST ’19]
− Segment reader/writer locks for queries
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CCEH [FAST ’19]
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CCEH [FAST ’19]
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Resizing blocks queries!
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PM-friendly hashing index
− Two-level bucketized hash table with one-
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− Low-overhead consistency guarantee via 
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 Write efficiency

 Crash consistency
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Slot-grained lock for queries
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Resizing blocks queries!

Concurrency is the bottleneck
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Challenges

−Performance degradation for blocking resizing

• High latency for coarse-grained locks

−Limited scalability for lock-based concurrency control

• Lock constraint for concurrent accesses

• Persisting overheads in the critical path

Design goals

−A PM-friendly and high-concurrency hashing scheme
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Dynamic Multi-level Structure

Non-blocking Resizing

Lock-free Concurrency Control
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Support for variable-length items

−Store pointers in slots and actual items outside of the table
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Support for variable-length items

Write-optimized hash table

−8 slots per bucket ...

KV_PTR1

Slots (each 8 bytes)

A bucket
KV_PTR8...
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Support for variable-length items

Write-optimized hash table
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−2 candidate buckets in one level
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Support for variable-length items

Write-optimized hash table

−8 slots per bucket

−2 candidate buckets in one level

−Sharing-based multiple levels

•Add a level for resizing

•Remove one when rehashing completes ...

...
2N-12N-22N-30 1 2

...
N-1N-20 1 ...

H1(key) H2(key)
key

No extra writes for insertion Write-optimal
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Dynamic Multi-level Structure

Non-blocking Resizing

Lock-free Concurrency Control
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Level list
−A linked list to associate levels
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Level list

−A linked list to associate levels

Context

−A metadata structure including:

• first_level (the largest level)

• last_level
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Resizing steps
1. Make a local copy of the global context pointer
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Resizing steps
1. Make a local copy of the global context pointer

2. CAS to append a new level
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Resizing steps
1. Make a local copy of the global context pointer

2. CAS to append a new level

3. CoW + CAS to update the first_level
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Resizing steps
1. Make a local copy of the global context pointer
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Resizing steps
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Resizing steps
1. Make a local copy of the global context pointer
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Resizing steps
1. Make a local copy of the global context pointer

2. CAS to append a new level
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Resizing steps
1. Make a local copy of the global context pointer

2. CAS to append a new level

3. CoW + CAS to update the first_level

4. Rehash items in the last level

5. CoW + CAS to update the last_level

Non-blocking resizing scheme
− Rehashing threads: rehash until there are 2 

levels left
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Non-blocking Resizing
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Resizing steps
1. Make a local copy of the global context pointer

2. CAS to append a new level

3. CoW + CAS to update the first_level

4. Rehash items in the last level

5. CoW + CAS to update the last_level

Non-blocking resizing scheme
− Rehashing threads: rehash until there are 2 

levels left

Expansion
stage

Rehashing
stage

Expansion stage Rehashing stage

Rehashing threads (background)

Resizing steps

Worker threads

Queries
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Dynamic Multi-level Structure

Non-blocking Resizing

Lock-free Concurrency Control
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High latency for pointer dereference
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High latency for pointer dereference

−Summary tags

• A tag is the summary for a key

• Leverage the unused 16 highest bits of 

a pointer in x86_64 to store the tag
Update tag and pointer in an atomic manner

Tag (2 B)

KV_PTR1A bucket KV_PTR8...

A slot
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High latency for pointer dereference

−Summary tags

• A tag is the summary for a key

• Leverage the unused 16 highest bits of 

a pointer in x86_64 to store the tag

Missing items due to rehashing
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High latency for pointer dereference

−Summary tags

• A tag is the summary for a key

• Leverage the unused 16 highest bits of 

a pointer in x86_64 to store the tag
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Thread-2: rehashing
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: a pointer in one slot
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High latency for pointer dereference

−Summary tags

• A tag is the summary for a key

• Leverage the unused 16 highest bits of 

a pointer in x86_64 to store the tag

Missing items due to rehashing

−Bottom-to-top (b2t) search

• Search from the last level to the first level

• Redo the search when no item is found and the context changes
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Thread-1: b2t search
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: a pointer in one slot
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Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS
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Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS

Duplicate items from concurrent insertions
xH1(x) H2(x)
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Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS

Duplicate items from concurrent insertions
−Both items are allowed for read

− Fix duplication in future update and deletion

Thread-1: 
insert(x)

Thread-2: 
insert(x)

...

...
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Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS

Duplicate items from concurrent insertions
−Both items are allowed for read

− Fix duplication in future update and deletion

 Loss of new items due to rehashing

Thread-1: 
insert(x)

Thread-2: 
rehashing

...
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Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS

Duplicate items from concurrent insertions
−Both items are allowed for read

− Fix duplication in future update and deletion

 Loss of new items due to rehashing

Thread-1: 
insert(x)

Thread-2: 
rehashing

......
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Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS

Duplicate items from concurrent insertions
−Both items are allowed for read

− Fix duplication in future update and deletion

 Loss of new items due to rehashing

Thread-1: 
insert(x)

Thread-2: 
rehashing

......
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Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS

Duplicate items from concurrent insertions
−Both items are allowed for read

− Fix duplication in future update and deletion

 Loss of new items due to rehashing

Thread-1: 
insert(x)
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Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS

Duplicate items from concurrent insertions
−Both items are allowed for read

− Fix duplication in future update and deletion

 Loss of new items due to rehashing

Thread-1: 
insert(x)

Loss
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Basic workflow
−Allocate the new item in PM

−B2t search to find duplicate keys

− Insert the pointer via CAS

Duplicate items from concurrent insertions
−Both items are allowed for read

− Fix duplication in future update and deletion

 Loss of new items due to rehashing

−Context-aware insertion

• Not inserted to the rehashed last level 

• Redo insertion for possible loss
Thread-1: 
insert(x)

Loss
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 Inconsistency for duplicate items
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 Inconsistency for duplicate items

− Concurrent insertions with the same key
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 Inconsistency for duplicate items

− Concurrent insertions with the same key

− Retry of context-aware insertion
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 Inconsistency for duplicate items

− Concurrent insertions with the same key

− Retry of context-aware insertion

− Data movement for rehashing
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 Inconsistency for duplicate items

− Concurrent insertions with the same key

− Retry of context-aware insertion

− Data movement for rehashing
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 Inconsistency for duplicate items
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 Inconsistency for duplicate items
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− Retry of context-aware insertion

− Data movement for rehashing
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 Content-conscious Find
− B2t search to find two pointers to duplicate 

items

B2t 
search
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 Inconsistency for duplicate items

− Concurrent insertions with the same key

− Retry of context-aware insertion

− Data movement for rehashing
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 Content-conscious Find
− B2t search to find two pointers to duplicate 

items

− Check if two pointers refer to the same item

B2t 
search
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 Inconsistency for duplicate items

− Concurrent insertions with the same key

− Retry of context-aware insertion

− Data movement for rehashing
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 Content-conscious Find
− B2t search to find two pointers to duplicate 

items

− Check if two pointers refer to the same item
• Yes: delete the first pointer matching the key

B2t 
search
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 Inconsistency for duplicate items

− Concurrent insertions with the same key

− Retry of context-aware insertion

− Data movement for rehashing
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 Content-conscious Find
− B2t search to find two pointers to duplicate 

items

− Check if two pointers refer to the same item
• Yes: delete the first pointer matching the key

• No: delete the first pointer and corresponding item  

matching the key
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Update failures due to interleaved update and rehashing
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Update failures due to interleaved update and rehashing
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Update failures due to interleaved update and rehashing
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Update failures due to interleaved update and rehashing
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Update failures due to interleaved update and rehashing

Baseline: two-round Find for update
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Update failures due to interleaved update and rehashing

Baseline: two-round Find for update

Optimization: redo Find only 

when simultaneously satisfying:
− Table is resizing

− The updated bucket is in the last level

− The bucket index is in one of 

the processed regions of 

rehashing threads
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Lock-free Deletion
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Delete matched pointers atomically via CAS

Inconsistency due to duplicate items

−Instead of Find, delete all matched items in b2t search

Deletion failures due to interleaved deletion and rehashing

−Similar optimizations to avoid frequent re-execution of deletion



Crash Recovery
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Crash consistency for lock-free Clevel hashing

−Persist after PM writes

−Persist dependent metadata after loading them

Recovery

−Rehashing resumes from the last processed bucket

Atomic visibility enables low-overhead crash consistency



Experimental Setup
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Platform
− Intel Optane DC PMM configured in App Direct mode

− 36 threads in one NUMA node

− PMDK

Comparisons
− LEVEL: original level hashing [OSDI ’18]

− CCEH: lazy deletion version, default probing distance (16 slots) [FAST ’19]

− CMAP: concurrent_hash_map engine from Intel pmemkv

− P-CLHT: PM variant of CLHT converted by RECIPE [SOSP ’19]

− CLEVEL: our Clevel hashing

 Benchmark: YCSB
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 Clevel hashing has comparable load factor with level hashing, i.e., 86%
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* Lack of implementation of update and deletion 
in open-source code
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 Due to using lock-free search and 

summary tags, Clevel hashing obtains 

− 1.2×−5.0× speedup for positive search

− 1.4×−9.0× speedup for negative search
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* Lack of implementation of update and deletion 
in open-source code

 Clevel hashing achieves low latency with 

correctness guarantee
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 Clevel hashing obtains up to 4.2× speedup than P-CLHT due to the lock-free concurrency 

control and non-blocking resizing

4.2×



Conclusion
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Existing PM hashing indexes have limited considerations for 

concurrency

Clevel hashing is PM-friendly

−Write-optimal multi-level structure without extra writes for insertion

−Crash consistency by enabling lock-free index to be persistent

Clevel hashing achieves high concurrency

−Non-blocking resizing without blocking queries

− Lock-free concurrency control with correctness guarantee

Clevel hashing achieves up to 4.2× speedup for throughput than 

P-CLHT



Thanks! Q&A

Email: chenzy@hust.edu.cn

Homepage: https://chenzhangyu.github.io

Open-source code: https://github.com/chenzhangyu/Clevel-Hashing

mailto:chenzy@hust.edu.cn
https://chenzhangyu.github.io/
https://github.com/chenzhangyu/Clevel-Hashing

