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Hashing Indexes in Local Memory
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Hashing Indexes in Disaggregated Memory
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Hashing Indexes in Disaggregated Memory
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Challenge 1: Hash Collision
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Challenge 1: Hash Collision
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Challenge 1: Hash Collision
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Challenge 1: Hash Collision
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Challenge 2: Concurrency Control
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Challenge 3: Remote Resizing
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Challenge 3: Extendible Resizing

• Challenge of using extendible resizing in disaggregated memory

– One extra RDMA for accessing the directory
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Challenge Summary

1. Many remote reads&writes for handling hash collisions

➢ Cuckoo hashing, hopscotch hashing, chained hashing

2. Concurrency control for remote access  

➢ One RDMA RTT for locking or unlocking

3. Tricky remote resizing of hash tables

➢ One extra RDMA RTT for accessing the directory
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RDMA-Conscious Extendible (RACE) Hashing

1. Many remote reads&writes for handling hash collisions

➢ Cuckoo hashing, hopscotch hashing, chained hashing

➢ Solution: One-sided RDMA-conscious table structure

2. Concurrency control for remote access  

➢ One RDMA RTT for locking or unlocking

➢ Solution: Lock-free remote concurrency control

3. Tricky remote resizing of hash tables

➢ One extra RDMA RTT for accessing the directory

➢ Solution: Extendible remote resizing with stale-read caching
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Architectural Overview
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One-sided RDMA-Conscious (RAC) Subtable

X

Sharing & 

colocation

……
0 1 2 3 4 5 6 7

RDMA read with doorbell batching

NN-1

Main bucket 0 Overflow bucket Main bucket 1

Combined bucket 0 Combined bucket 1 

Header SlotA Bucket Group:

RAC 

Subtable:

• Design decisions
– Associativity

– Two choices

– Overflow colocation

• Strengths
– RDMA-search friendly

– RDMA-IDU friendly

– High memory efficiency 
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Lock-free Remote Concurrency Control

• Bucket Structure: supporting the RDMA CAS
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Lock-free Remote Concurrency Control
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Extendible Remote Resizing

• Client Directory Cache with Stale Reads
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Extendible Remote Resizing

• Resize a directory

(a) Before the directory resizing
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Experimental Setup

• Testbed

– 4 client machines + 1 memory machine

• Workloads

– YCSB, 16B key + 32B value

• Comparisons

– Pilaf cuckoo hashing [ATC’15]

– FaRM hopscotch hashing [NSDI’14]

– DrTM cluster hashing [SOSP’15] 
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Insertion

• RACE hashing improves the insertion throughput by 1.4~16.9×
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Search
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Deletion

• RACE hashing improves the deletion throughput by 1.7~2.1×
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Update

• RACE hashing improves the deletion throughput by 1.5~1.9×
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YCSB Hybrid Workloads

• RACE hashing speeds up the YCSB hybrid workloads by 1.4~1.3.7×
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The Stale-read Client Directory (SRCD) Cache

• The SRCD cache reduces the request latency by 23%~32%
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Conclusion

• Traditional distributed in-memory hashing indexes become inefficient 
in disaggregated memory
– Many remote access, concurrency access, resizing

• We propose RACE hashing, the first hashing index designed for 
disaggregated memory
– One-sided RDMA-conscious table structure

– Lock-free remote concurrency control

– Extendible remote resizing

• RACE Hashing outperforms state-of-the-art distributed in-memory 
hashing indexes by 1.4-13.7× in YCSB hybrid workloads
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