
One-Sided RDMA-Conscious Extendible
Hashing for Disaggregated Memory

Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, Yu Hua*

Huawei Cloud

*Huazhong University of Science and Technology

USENIX Annual Technical Conference (ATC), 2021

2

Disaggregated Memory

Memory Memory Memory Memory

Memory Memory Memory Memory

Fast Network

CPU

CPU

Cache

CPU

CPU

Cache

CPU

CPU

Cache

CPU

CPU

Cache

Memory

Pool

Compute

Pool

Resource Utilization

Failure Isolation

Elasticity

3

Hashing Indexes in Local Memory

CPU
Monolithic

Server

Hash Table

Search/Insertion/Deletion/Update

Local LOAD&STORE

4

Hashing Indexes in Disaggregated Memory

CPU
Compute

Pool

Hash Table

Search/Insertion/Deletion/Update

Local LOAD&STORE

Memory

Pool

5

Hashing Indexes in Disaggregated Memory

CPU
Compute

Pool
Search/Insertion/Deletion/Update

RDMA READ/WRITE/ATOMIC

Memory

Pool
Hash Table

6

Challenge 1: Hash Collision

CPU
Compute

Pool
Search/Insertion/Deletion/Update

RDMA READ/WRITE/ATOMIC

Memory

Pool
Hash Table

Challenge 1: Many remote reads&writes for handling hash collisions

7

Challenge 1: Hash Collision

CPU
Compute

Pool
Search/Insertion/Deletion/Update

RDMA READ/WRITE/ATOMIC

Memory

Pool
Cuckoo Hashing

Challenge 1: Many remote reads&writes for handling hash collisions

Evict

8

Challenge 1: Hash Collision

CPU
Compute

Pool
Search/Insertion/Deletion/Update

RDMA READ/WRITE/ATOMIC

Memory

Pool
Hopscotch Hashing

Challenge 1: Many remote reads&writes for handling hash collisions

Move

9

Challenge 1: Hash Collision

CPU
Compute

Pool
Search/Insertion/Deletion/Update

RDMA READ/WRITE/ATOMIC

Memory

Pool
Chained Hashing

Challenge 1: Many remote reads&writes for handling hash collisions

Traverse

10

Challenge 2: Concurrency Control

CPU
Compute

Pool
Search/Insertion/Deletion/Update

RDMA READ/WRITE/ATOMIC

Memory

Pool

Challenge 2: Locking has high overhead

Hash Table

Lock&Unlock

11

Challenge 3: Remote Resizing

CPU
Compute

Pool
Search/Insertion/Deletion/Update

RDMA READ/WRITE/ATOMIC

Memory

Pool

Challenge 3: Moving items from the old table to the new table

Old Table New Table

Resizing

12

Challenge 3: Extendible Resizing

• Challenge of using extendible resizing in disaggregated memory

– One extra RDMA for accessing the directory

000 001 010 011

2 2 3 2

100 101 110 111

3

(c) Directory resizing

(global depth = 3)

00 01 10 11

2 2 2 2

(b) Subtable resizing

(global depth = 2)

Directory:

Subtable:

Local Depth:

00 01 10 11

2 1 2

(a) A hash table

(global depth = 2)

13

Challenge Summary

1. Many remote reads&writes for handling hash collisions

➢ Cuckoo hashing, hopscotch hashing, chained hashing

2. Concurrency control for remote access

➢ One RDMA RTT for locking or unlocking

3. Tricky remote resizing of hash tables

➢ One extra RDMA RTT for accessing the directory

14

RDMA-Conscious Extendible (RACE) Hashing

1. Many remote reads&writes for handling hash collisions

➢ Cuckoo hashing, hopscotch hashing, chained hashing

➢ Solution: One-sided RDMA-conscious table structure

2. Concurrency control for remote access

➢ One RDMA RTT for locking or unlocking

➢ Solution: Lock-free remote concurrency control

3. Tricky remote resizing of hash tables

➢ One extra RDMA RTT for accessing the directory

➢ Solution: Extendible remote resizing with stale-read caching

15

Architectural Overview

Memory Pool

00 01 10 11

2 1 2

Directory:

Subtable:

Local

Depth:

Compute Pool

N
e
tw

o
rk

00 01 10 11
Directory

Cache

Client 0

00 01 10 11
Directory

Cache

Client 1

RACE Hash Table

16

One-sided RDMA-Conscious (RAC) Subtable

X

Sharing &

colocation

……
0 1 2 3 4 5 6 7

RDMA read with doorbell batching

NN-1

Main bucket 0 Overflow bucket Main bucket 1

Combined bucket 0 Combined bucket 1

Header SlotA Bucket Group:

RAC

Subtable:

• Design decisions
– Associativity

– Two choices

– Overflow colocation

• Strengths
– RDMA-search friendly

– RDMA-IDU friendly

– High memory efficiency

17

Lock-free Remote Concurrency Control

• Bucket Structure: supporting the RDMA CAS

Header Slot Slot SlotSlotBucket:

Klen Vlen Key ValueKV Block: CRC

Local Depth SuffixHeader:

(8B)

Fp Len Pointer

8bit 8bit 48bit

Slot:

(8B)

18

Lock-free Remote Concurrency Control

A Client

Mem Pool
Read

KV

Read combined

buckets

(a) Search

Mem Pool

A Client

Write

KV

Read combined

buckets

Write the KV

pointer

Re-read

combined buckets

(b) Insertion

A Client

Mem Pool
Read

KV

Read combined

buckets

Set the slot

to null

(c) Deletion

Mem Pool

A Client

Write the

new KV

Read combined

buckets
Update the

KV pointer

Read the

old KV

(d) Update

……
0 1 2 3 4 5 6 7 NN-1

RAC

Subtable:

19

Extendible Remote Resizing

• Client Directory Cache with Stale Reads

00 01 10 11 00 01 10 11

2 2 2 2

Directory:

Subtable:

Local

Depth:

① XX00 2 00 Yes

② XX01 2 01 Yes

③ XX11 2 01 No

① ②

③

RACE Hash Table

Key Bucket Correct?

Different cases of stale reads:

2 1 2

Local

Depth:

Memory PoolCompute Pool

N
e
tw

o
rk

Directory

Cache

Client

Local

Depth
Suffix

Header:

20

Extendible Remote Resizing

• Resize a directory

(a) Before the directory resizing

00 01 10 11

Used area

100 101

Unused area

…1

GD

Fixed

addr

LD Pointer

An entry

Lock

8bit 8bit 48bit

(b) After the directory resizing

00 01 10 11 100 101

2

GD

…

Used area Unused area

Movement

21

Experimental Setup

• Testbed

– 4 client machines + 1 memory machine

• Workloads

– YCSB, 16B key + 32B value

• Comparisons

– Pilaf cuckoo hashing [ATC’15]

– FaRM hopscotch hashing [NSDI’14]

– DrTM cluster hashing [SOSP’15]

Client Machines

Memory Pool

Machine

Switch

22

Insertion

• RACE hashing improves the insertion throughput by 1.4~16.9×

10

100

1000

0.4 0.5 0.6 0.7 0.8 0.9

In
se

rt
io

n
 L

at
en

cy
 (

u
s)

Load Factor

Cuckoo Hopscotch

Cluster RACE

0

2

4

6

8

10

12

14

1 2 4 8 16 32 64 128

Th
ro

u
gh

p
u

t
(M

 r
eq

s/
s)

The Number of Client Processes

Cuckoo

Hopscotch

Cluster

RACE

23

Search

5

10

15

20

25

0.4 0.5 0.6 0.7 0.8 0.9

Se
ar

ch
 L

at
en

cy
 (

u
s)

Load Factor

Cuckoo Hopscotch

Cluster RACE

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128

Th
ro

u
gh

p
u

t
 (

M
 r

eq
s/

s)

The Number of Client Processes

Cuckoo

Hopscotch

Cluster

RACE

24

Deletion

• RACE hashing improves the deletion throughput by 1.7~2.1×

0
2
4
6
8

10
12
14
16
18
20

1 2 4 8 16 32 64 128

Th
ro

u
gh

p
u

t
(M

 r
eq

s/
s)

The Number of Client Processes

Cuckoo

Hopscotch

Cluster

RACE

10

15

20

25

30

35

40

0.4 0.5 0.6 0.7 0.8 0.9

D
el

et
io

n
 L

at
en

cy
 (

u
s)

Load Factor

Cuckoo Hopscotch

Cluster RACE

25

Update

• RACE hashing improves the deletion throughput by 1.5~1.9×

0

2

4

6

8

10

12

14

16

1 2 4 8 16 32 64 128

Th
ro

u
gh

p
u

t
(M

 r
eq

s/
s)

The Number of Client Processes

Cuckoo

Hopscotch

Cluster

RACE

10

15

20

25

30

35

40

0.4 0.5 0.6 0.7 0.8 0.9

U
p

d
at

e
La

te
n

cy
 (

u
s)

Load Factor

Cuckoo Hopscotch

Cluster RACE

26

YCSB Hybrid Workloads

• RACE hashing speeds up the YCSB hybrid workloads by 1.4~1.3.7×

0

5

10

15

20

25

10/90 30/70 50/50 70/30 90/10

Th
ro

u
gh

p
u

t
(M

 r
eq

s/
s)

Search/Insertion Ratio (%)

Cuckoo Hopscotch
Cluster RACE

27

The Stale-read Client Directory (SRCD) Cache

• The SRCD cache reduces the request latency by 23%~32%

0
3
6
9

12
15
18
21

Insertion Search Deletion Update

La
te

n
cy

 (
u

s)
W/o SRCD Cache W/ SRCD Cache

28

Conclusion

• Traditional distributed in-memory hashing indexes become inefficient
in disaggregated memory
– Many remote access, concurrency access, resizing

• We propose RACE hashing, the first hashing index designed for
disaggregated memory
– One-sided RDMA-conscious table structure

– Lock-free remote concurrency control

– Extendible remote resizing

• RACE Hashing outperforms state-of-the-art distributed in-memory
hashing indexes by 1.4-13.7× in YCSB hybrid workloads

Thank you! Q&A

