

One-Sided RDMA-Conscious Extendible Hashing for Disaggregated Memory

Pengfei Zuo, Jiazhao Sun, Liu Yang, Shuangwu Zhang, Yu Hua*

Huawei Cloud *Huazhong University of Science and Technology

USENIX Annual Technical Conference (ATC), 2021

www.huaweicloud.com

Disaggregated Memory

Hashing Indexes in Local Memory

Hashing Indexes in Disaggregated Memory

Hashing Indexes in Disaggregated Memory

Challenge 1: Many remote reads&writes for handling hash collisions

Challenge 1: Many remote reads&writes for handling hash collisions

Challenge 1: Many remote reads&writes for handling hash collisions

Challenge 1: Many remote reads&writes for handling hash collisions

9

Challenge 2: Concurrency Control

Challenge 2: Locking has high overhead

Challenge 3: Remote Resizing

Challenge 3: Moving items from the old table to the new table

Challenge 3: Extendible Resizing

- Challenge of using extendible resizing in disaggregated memory
 - One extra RDMA for accessing the directory

Challenge Summary

- 1. Many remote reads&writes for handling hash collisions
 - Cuckoo hashing, hopscotch hashing, chained hashing

2. Concurrency control for remote access

One RDMA RTT for locking or unlocking

3. Tricky remote resizing of hash tables

One extra RDMA RTT for accessing the directory

RDMA-Conscious Extendible (RACE) Hashing

1. Many remote reads&writes for handling hash collisions

- Cuckoo hashing, hopscotch hashing, chained hashing
- Solution: One-sided RDMA-conscious table structure

2. Concurrency control for remote access

- One RDMA RTT for locking or unlocking
- Solution: Lock-free remote concurrency control

3. Tricky remote resizing of hash tables

- One extra RDMA RTT for accessing the directory
- Solution: Extendible remote resizing with stale-read caching

Architectural Overview

Memory Pool

One-sided RDMA-Conscious (RAC) Subtable

www.huaweicloud.com

Lock-free Remote Concurrency Control

• Bucket Structure: supporting the RDMA CAS

Lock-free Remote Concurrency Control

Extendible Remote Resizing

Client Directory Cache with Stale Reads

Extendible Remote Resizing

• Resize a directory

(b) After the directory resizing

(a) Before the directory resizing

Experimental Setup

- Testbed
 - 4 client machines + 1 memory machine
- Workloads
 - YCSB, 16B key + 32B value
- Comparisons
 - Pilaf cuckoo hashing [ATC'15]
 - FaRM hopscotch hashing [NSDI'14]
 - DrTM cluster hashing [SOSP'15]

Client Machines

Insertion

RACE hashing improves the insertion throughput by 1.4~16.9×

Search

Deletion

RACE hashing improves the deletion throughput by 1.7~2.1×

Update

RACE hashing improves the deletion throughput by 1.5~1.9×

YCSB Hybrid Workloads

RACE hashing speeds up the YCSB hybrid workloads by 1.4~1.3.7×

The Stale-read Client Directory (SRCD) Cache

• The SRCD cache reduces the request latency by 23%~32%

Conclusion

- Traditional distributed in-memory hashing indexes become inefficient in disaggregated memory
 - Many remote access, concurrency access, resizing
- We propose RACE hashing, the first hashing index designed for disaggregated memory
 - One-sided RDMA-conscious table structure
 - Lock-free remote concurrency control
 - Extendible remote resizing
- RACE Hashing outperforms state-of-the-art distributed in-memory hashing indexes by 1.4-13.7× in YCSB hybrid workloads

Thank you! Q&A