Semi-hierarchical Semantic-
aware Storage Architecture

Yu Hua

Huazhong University of Science
and Technology

https://csyhua.github.io

Current and Future Storage

SMILE

Current and Future Storage 1

» SMILE
- Scale : Big Data , Big Storage

Current and Future Storage 2

« SMILE
« NN(M)-Intelligent :

Current and Future Storage 3

« SMILE
 Integrated :

» Near Data Processing :

» Processing in-memory (PIM)
» In-storage computing (ISC)
» Quantx(Micron), Optane(Intel), NDP(HUAWEI),

Current and Future Storage 4

« SMILE

 Long-term

»Storage media and runtime context
» Time-sensitive and value

Current and Future Storage 5

« SMILE
« Edge :

» Edge computing, fog computing,
proximity computing,

Challenge:
Hierarchical Architecture

» Heterogeneous Principle

> Differentiated Performance
»Management Complexity

* One-storey house->Skyscraper
 More and more levels

Challenge: Storage Reliability

Hot-spot data D RA M

Important data

Cold data
ArchivalData Tape

Hierarchical Data Structure

Thistreeistoo FAT | Thistreeistoo HIGH !

10

Hierarchical and Vertical Architecture

 Idea: based on locality principle, some
key data consume many system
resources.

* However, in the era of big data, the
efficiency of locality becomes weak,
thus being difficult to improve hit

ratio.

11

The essence behind Hierarchy

e Goal : identify the correlation

 In essence, the hierarchy is an approach to
dynamic filter data to obtain correlated
aggregation and on-demand allocation.

o If the flat or semi-hierarchical schemes are
able to achieve the same goal, it would be
much better with significant performance
Improvements.

Hierarchical

Source
data

Correlation

Flat 12

Semi-hierarchical Architecture

* Problem to be addressed:

> How to storage data in large—scale storage
systems

* The idea:

> Semantic storage is the new form of
implementing storage systems.

13

Our related work

Semantic Namespace : SANE(TPDS14)

Semantic Aggregation : FAST(SC14),
HAR(ATC14), SiLo(ATC11),

Semantic Hash Computation :
SmartCuckoo(ATC17), DLSH(SoCC17),
SmartEye(INFOCOM15), NEST(INFOCOM13)

Semantic On-line Service : ANTELOPE(TC14)

14

SANE: The namespace

Add/Delete/) . . —
Updzelti ‘ Caching || Prefetching || Deduplication

System Perspective

(Performance Optimization)
A

/
Semantic-aware Per-File
Namespace Representation
File . . Semantic Correlation Namespace Dynamic
System | Hierarchical Extraction Construction
Tree File r-————-—--—-———-
Organization
Semantic Correlation
Identification
-
\
File System Interface
Physical
Devices

"SANE: Semantic-Aware Namespace in Ultra-large-scale File Systems’, |IEEE Transactions on PardBel and
Distributed Systems (TPDS), Vol.25, No.5, May 2014, pages: 1328-1338.

SANE: The Semantic Namespace

Flat Addressing

e Hierarchy becomes the
nerformance bottleneck

e Design goals :

Conventional directory tree

»
Semantic Correlation SANE
Extraction N s NPT U
> Searchable ey e
> Unique

—— Mapping
--- Grouping

e Construct the
mewie semMantic-aware
7@) \é@ \/\\—®§/\/\é§ é \/) storage units n am eS pace

Sl S7 SM SZ S 8¢ S:8: 8¢ 8 S, S]Z §¢ S; LSTAIS5 Sza\s;z-—szz

16

Conventional directory tree Semantic R-tree

Comparisons with Conventional
File Systems

Conventional directory tree Semantic grouping
D1()
—— Mapping
D11 D12 D13 Grouping
() () ()
Virtual index
D111 _/ D112} D121 D12 12 131 D132 units
N
)
_ 7/
files Storage units

17

Grouping Procedures

Mapping of Index Units

e Our mapping isbased on a simple bottom-up
approach that iteratively appliesrandom
selection and labeling oper ations.

The second-level index unit ‘
-7 \ S
2 \ N
e \ \\
pad \ S
Thefirst-level 7) N
index units ‘ ' | ndex units

- __/

.“‘ “I)‘/:L‘“ “. Storage units

19

Components

Y

POSIX /O

A

Conventional Access Access Naming
to File Systems

Service

Locality-aware || Per-File Namespace
| dentification Read | | Enhanced POSIX I/O
Access Patterns File Attributes

Requests

Data
Management

Metadata Fetching

Naming and Rename

// \\
< ~

/" Member(C)=\

eSubmodular M aximization ¥ 1A, G, H, 1]\
e Select a subset of namespaces with
distinct names

S* € argmax F'(S) st |S|<T.

SCV

...... F F A G H LI ... Maximization for M onotone
AT AT 7« _~ Submodular functions
/// | N ,/f/\/\A/\/\\\ « Scoring Function is a monotone
...... ’ C D submodular function
— Greedy algorithm
Namespace:(AJ=H(E da, (€ ¢ac (B Car] — Constant-scale mathematical
Member: (B)={(A, dag), (E, dgg), (F, dpr)} quallty guarantee -

Membeit.(C)={(A dac, (G dcg, (H dcp) (1 de))
Membei:(D)={(A dar) ="]

Example 1:
New Deduplication Ecosystem

Application-level Deduplication for
Codgeantiictil=ticiliiile [;{)ea]-time Processinngemandc The Storage
system (L BFS) - Ecosystem for New
SOSP 2001 Deduplication

Venti: Archival data storage
FAST 2002

~>< Reliability >

QoS
Data domain file system (DDFYS)

%Gerformanca
FAST 2008 Device-level Deduplication for

NVM Optimization Demands L, (,,,,,,

22

N

The Synergization of Similarity and Locality——
SiLo

Files

® Expose and exploit more similarity by grouping
strongly correlated small files into a segment and
segmenting large files

®|_everage locality in the backup stream by

Indexing

Chunking Hashing | .
> »| Fingerprints > Store

Chunks

The Scalability of
Deduplication Indexing

Deduplicate 800
TB unique data.

SHA-1 signature.
Avg. 8KB Chunk.

- J

Similarity approach

2TB Fingerprints
are generated .

Global indexing.
Disk bottleneck.

- J

grouping contiguous segments into blocks to
capture similar and duplicate data missed by the
probabilistic similarity detection.

Existing data stream Small files Large files
(=< 64KB) (= 2 MB)
Percentage of = 80% < 20%
total file number
Percentage of < 20% = 80%
total space

Input data stream

Potential duplicate

Locality Enhancement

“SLo: A Smilarity-Locality based Near-Exact Deduplication Scheme with Low RAM Overhead and#1igh

Throughput,” Proceedings of USENIX ATC, June 2011.

erouping many highly
correlated small files
into a segment to

minimize dedup
_ overheads

Dividing the large
files into many small
segments to expose

more similarity
characteristics

Fragmentation in Deduplication

*History-Aware Rewriting algorithm (HAR)

backup

restore I garbage collection

|

container I
|

|

= =
- T T T T L L LT LT T
= H

contaimer I contaimner I

container

visk

container pnnl_____...—-—-'-'—___-_—_

historical info

The fragmentation decreases restore performance and results in invalid chunks
becoming physically scattered in different containers after users delete backups.

HAR exploits historical information of backup systems to more accurately identify
and rewrite fragmented chunks.

" Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems vig?
Exploiting Historical Information”, Proc. USENIX ATC, 2014,

Example 2: Application-level
Approximate M ethodology--FAST

o e e e e e e e e e e e e 1
A = N |
Offine & oo

Luocal &
Kevframe Feature Feature-aware L ; 100+ 00
Extraction Extraction Bloom filter Ll B
g
" gl
Video Library Sl FT . 0011+ 10
FFMPEG — \ y,

Random kicking
Semi-Random kicking
L ast-step kicking

"FAST: Near Real-time Searchable Data Analytics for the Cloud", Proceedings of the International Céaferenc
for High Performance Computing, Networking, Storage and Analysis (SC), November 2014

Application-level Approximate
Methodology: FAST

System Per spective
(Performance Optimization)

!

FAST M anageable Flat L .
Semant_ic Iy S Multimedia solutior
Czrr:gj'g:n ﬂ‘ Cuckoo Hashing-driven
Storage Strategy System solutior
(Correlated Groups)
4 LSH based Semantic | Feature 1 | | Fingerprint 1 |
Aggregation
File Summarized
Operating | System (Bloom l‘:ilter) Tmags | Featur - }_>| Fingerprint - Bloom Filter
&/stems A - —» » .
Multi-hashing Summarization (e) Extrac] Hash () LSH

Hash
Feature Vectors
- PCA-SIFT
DoS beced Daection based Feature Exaction

of Interest Points | Feature 1 | | Fingerprint 1 |
——————————— Interest Points geIp LSH
Extract

Hash Bloom Filter
>)

Bucket IC
(=)

-

: Imag Featurt
g t)
File System | nterface |

Hash— -
| Fingerprint

Physical

e | meeswes |

-

"FAST: Near Real-time Searchable Data Analytics for the Cloud", Proceedings of the International Céfferenc
for High Performance Computing, Networking, Storage and Analysis (SC), November 2014

In-network Deduplication

Approximate | mage Transmission

|
| |
| |
! Feature . !
| |
. N k . . S E Similarity : Representation AectlEibiezaler |
|
in Networking: SmartEye — =
I 9 Summarization |
SmartEye Client Cloud- assisted Servee ;

|
oS-aware Diff Serv !
_ Sharing and uploading : Q !
Summarized > . . | . !
» Indexing Caching I | Label Mapping |
Vector Operation responses L abel ! :
A Multi- hashing P ponses A A : |
Summarization I | Label Switching Label Matching :
Feature Semantic- aware : '
Representation Growps /| T TTTTTTTTTTTTTTTTTTTTTTT ’

3 Y it LT
PCA-SIFT Software Defined Network
Feature Exaction Query requests L LSH based Semantic (SDN)
Interest Points - Aggregatior.]
(freres ot) Query results s8Tes Operations

Local Image Store

Crowd-generated Images

| 1

| |

: |

[o | [oSRoung]

< I

A DoG Detection [: M anagement |
| [Classficaion| |

' ;

A

i 1 1 1 1 i Cloud -assisted Server
DiffServ-based Labels: Indexing, Deleting/Switching Client
Send the Features Locality Sensitive Hashing
Extract the Feature: > Computation for Features
of Images +
Regular Network Ne dentical Features
Transmission exis ?
Ye:
N¢ ~Tdentical Features ™\ Send the Features Identify Top k Similar
exist? - Images
Ye:
Delay Locally
Identified Images Correlati
‘ Send the Unique Images orrelahon aware
Grouping

"SmartEye: Real-time and Efficient Cloud Image Sharing for Disaster Environrr;entS'z,7
Proceedings of INFOCOM, 2015, pages. 1616-1624

The design of Smartkye

Compact Feature Representation

Keyframe 2

<

> 012146168 97--- T

> 519694813172+ |-

.

~

31975640107 [

=

Local Keypoints 1

| — — 11
> 01214417 9 100

> 11702153103 9--- ,;

~

29985540109 H

101000001

Feature Yector 1

Local Keypoints 2

101001000

Feature Vector 2

28

Locality Sensitive Hashing (L SH)

o If [|p,q|ls <R then Prulh(p) = h(q)] > P1,
o If ||p,qlls > cR then Pryg[h(p) = h(q)] < P».

Near neighbor?

O notsure b

O yes
O no

Locality-Sensitive Hashing (LSH)

* Close items will collide with high probability
« Distant items will have very little chance to collide 30

Efficient Cuckoo-driven LSH

(1) UseCuckoo Driven L SH to reduce search time when collision occurs
(2) Useneighbor bucketsto further reduce the possibility of kickout
(3) Spaceefficiency dueto neighboring probe and data locality

Blue: hit position by LSH computation

Green: Neighbor bucket has data It all LSH;(a) are full, can choose

adjacent empty bucket

correlation
LSH,(a) e .
== —————=—==== | | Y
' - . | []
| c|b
| LSH;(a) '_IZS_H2_(a_) ______________
r—————————————————= | | ;

A multi-choice LSH Availablelocationsfor item a

Probing adjacent neighbors: the probability of endless “kicking 3
out” is much more smaller than ordinary cuckoo hashing

=

NEST: Efficient Cuckoo-driven LSH

(1) UseCuckoo Driven L SH to reduce search time when collision occurs
(2) Useneighbor bucketsto further reduce the possibility of kickout
(3) Spaceefficiency dueto neighboring probe and data locality
Blue: hit position by LSH computation

Green: Neighbor bucket has data If all LSH;(a) are full, can choose

adjacent empty bucket

correlation
LSH,(a) e .
r— " ——-———-—-———-—7 = I Y
| |
| | c|b -
| LSH,(a) , LSH;(a)

A multi-choice LSH Availablelocationsfor item a

Probing adjacent neighbors: the probability of endless “kicking
out” in NEST is much more smaller than ordinary cuckoo hashing

"NEST: Locality-aware Approximate Query Service for Cloud Computing"”, Proceedings

32
of INFOCOM, April 2013, pages. 1327-1335

NEST: Resolve Collision: if still

falls
LSH,(a) LSH (@)
+ y
c|[b|f c | b
LSIl_Iz(a]
e] T
LSHgy(a) LSH.(a)
v Y
i [d]j i]dj]
o ~ LSH.(h) _
Hashing collisions for inserting item a Moving item h to itsanother |ocation

Note: Adjacent probing significantly reduce or even avoid hash failing
(FAST INDEX)

LSH1 LSH2 LSH3 LSH4 LSHS LSH6

NESTI1 NEST2

33

Example 3: Pseudoforest

N

B An endless loop Isformed.

B Endless kickouts for any
Insertion within the loop.

l
b
l
d
l
l
l

"SmartCuckoo: A Fast and Cost-Efficient Hashing Index Scheme for Cloud Storage Systems', 34
Proceedings of USENIX Annual Technical Conference (USENIX ATC), July 2017, pages. 553-566

DLSH: A Distribution-aware LSH

B Due to distribution-unaware projection vectors:
» Multiple hash tables to maintain data local |ty and guarantee

the query accuracy. ' "
B Design goal: | j
> Decrease the number of hash tables

» Mitigate in-memory consumption

e Approach:
» Differentiating the aggregated data in a suitable direction;
» Exhibiting the data locality as well as decreasing the hash

41 . . N . . | 4L i =
-4 -2 0 2 4 6 8 -4 -2 0 2 4 6

. dq+b D Projection vector selection
collisions. SR
9@=ah@+ah.@++a h)
/ ®@ Weight quantization
Table [o [Y]]
- - -
"DLSH: A Didtribution-aware LSH Scheme for wwoc: =T T 1] — ® Interval adjustment
Approximate Nearest Neighbor Query in Cloud] l

Computing”, Proceedings of ACM Symposium on Cloud
Computing (SoCC), 2017

Distance computation
D 35

@ Frequency recordation

8

Example 4: On-line
Precomputatlon--Data Cube

LEvening 10 /22 8
Time 4fiernoon 57 /196 188 761
Morning
West | 15 | 176 168 | 52 59 >
8
East | 18 | 158 | 172 | 69 12
Direction g
South | 56 20 127 | 82 67
North | 2& 372 (165 | 55

SirA StBE S C StrD
Position

* Leverage precomputation based
data cube to support online cloud
services

e Use semantic-aware partial
materialization to reduce the
operation and space overheads

Evening /10 /22 /6 / 8§

Period Aﬁemoon/57/196/]88/152
Morning /

/] S

67,

1/0 Read | 5¢ 206 | 127 82

Behavior

write | 28 372|165 | 55

Server A Server E Server C Server D

Position
(* b */
0-D cuboid
(perioa * *,
1-D cuboid (* * positior)

(* 1/0 behavior positior.)

3-D cuboid
(perioa 1/O behavior positior)

"ANTELOPE: A Semantic-aware Data Cube Scheme for Cloud Data Center Networks', 36
|EEE Transactions on Computers (TC), Vol.63, No.9, September 2014, pages. 2146-2159.

vy *v *Vv *Vv °*Y¥

A\

Open Source Codes (in GitHub)

SmartCuckoo: in GitHub. SmartCuckoo is a new cuckoo hashing scheme to
support metadata query service.

https://github.com/syy804123097/SmartCuckoo

SmartSA (E-STORE): in GitHub to support near-deduplication for image
sharing based on the energy availability in Smartphone.

https://github.com/Pfzuo/SmartSA

Real-time-Share: in GitHub, to support real-time image sharing in the cloud,
which is an important component of SmartEye (INFOCOM 2015).

https.//github.com/syy804123097/Real-time-Share

MinCounter: in GitHub. MinCounter is the proposed data structure iIn
the MSST 2015 Paper.

https://github.com/syy804123097/MinCounter

NEST: in GitHub (Download INFOCOM 2013 Paper, Source
Codes, Manual and TraceData).

https.//github.com/syy804123097/NEST

LSBE (Locality-Sensitive Bloom Filter): in GitHub (Download TC 2012
Paper, Source Codes and Manual).

https.//github.com/syy804123097/L SBF 37

Thanks and Questions

