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Current and Future Storage 

S M I L E
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Current and Future Storage 1

• SMILE
• Scale：Big Data，Big Storage
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Current and Future Storage 2
• SMILE
• NN(M)-Intelligent：
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Current and Future Storage 3
• SMILE
• Integrated：

Near Data Processing：
Processing in-memory (PIM) 
In-storage computing (ISC) 
Quantx(Micron), Optane(Intel), NDP(HUAWEI), ……
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Current and Future Storage 4
• SMILE
• Long-term ：

Storage media and runtime context
Time-sensitive and value
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Current and Future Storage 5
• SMILE
• Edge：
• Edge computing, fog computing, 

proximity computing, ……
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Challenge: 
Hierarchical Architecture

Heterogeneous Principle
Differentiated Performance
Management Complexity

• One-storey house->Skyscraper
• More and more levels
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Challenge: Storage Reliability

SRAM
DRAM
……

Volatile

HDD
Tape
……

Non-Volatile

NVM
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Hierarchical Data Structure

Millions of files under each 
directory

…

This tree is too FAT ! This tree is too HIGH !
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Hierarchical and Vertical Architecture

• Idea: based on locality principle, some 
key data consume many system 
resources.

• However, in the era of big data, the 
efficiency of locality becomes weak, 
thus being difficult to improve hit 
ratio.
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The essence behind Hierarchy
• Goal：identify the correlation 
• In essence, the hierarchy is an approach to 

dynamic filter data to obtain correlated 
aggregation and on-demand allocation.

• If the flat or semi-hierarchical schemes are 
able to achieve the same goal, it would be 
much better with significant performance 
improvements.

Source 
data

Correlation

Hierarchical

Flat
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• Problem to be addressed:

How to storage data in large-scale storage 
systems

• The idea：

Semantic storage is the new form of 
implementing storage systems.

SemiSemi--hierarchical Architecturehierarchical Architecture
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Our related work
• Semantic Namespace：SANE(TPDS14)

• Semantic Aggregation：FAST(SC14), 
HAR(ATC14), SiLo(ATC11),

• Semantic Hash Computation：
SmartCuckoo(ATC17), DLSH(SoCC17), 
SmartEye(INFOCOM15), NEST(INFOCOM13)

• Semantic On-line Service：ANTELOPE(TC14)
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SANE: The namespaceSANE: The namespace

"SANE: Semantic-Aware Namespace in Ultra-large-scale File Systems", IEEE Transactions on Parallel and 
Distributed Systems (TPDS), Vol.25, No.5, May 2014, pages:1328-1338.
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Flat Addressing
• Hierarchy becomes the 

performance bottleneck
• Design goals：

Searchable
Unique

SANE: The Semantic NamespaceSANE: The Semantic Namespace

• Construct the 
semantic-aware 
namespace
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Comparisons with Conventional 
File Systems



18

Grouping Procedures

Node Vector



19

Mapping of Index Units
• Our mapping is based on a simple bottom-up 

approach that iteratively applies random 
selection and labeling operations.

Index units
The first-level 

index units

The second-level index unit
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Components 

Locality-aware 
Identification

Per-File Namespace 
Construction

Users

Enhanced POSIX I/O

Metadata Fetching

Access 
Requests

Naming 
Service

FUSE

Index Store

VFS

Hierarchical File Systems
……

POSIX I/O

File AttributesAccess Patterns

Semantic Grouping

Read

Write

Data 
Management

Conventional Access 
to File Systems
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Naming and Rename 
Submodular Maximization
Select a subset of namespaces with 

distinct names

Maximization for Monotone 
Submodular functions

• Scoring Function is a monotone 
submodular function

– Greedy algorithm 
– Constant-scale mathematical 

quality guarantee
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Example 1: 
New Deduplication Ecosystem

22

Low-bandwidth network file 
system (LBFS)

SOSP 2001

Data domain file system (DDFS)
FAST 2008

Venti: Archival data storage
FAST 2002
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The Synergization of Similarity and Locality——
SiLo

Expose and exploit more similarity by grouping 
strongly correlated small files into a segment and 
segmenting large files

Leverage locality in the backup stream by 
grouping contiguous segments into blocks to 
capture similar and duplicate data missed by the 
probabilistic similarity detection.

Expose and exploit more similarity by grouping 
strongly correlated small files into a segment and 
segmenting large files

Leverage locality in the backup stream by 
grouping contiguous segments into blocks to 
capture similar and duplicate data missed by the 
probabilistic similarity detection.

“SiLo: A Similarity-Locality based Near-Exact Deduplication Scheme with Low RAM Overhead and High 
Throughput,” Proceedings of USENIX ATC, June 2011.

The Scalability of 
Deduplication Indexing

Deduplicate 800 
TB unique data.

SHA-1 signature.
Avg. 8KB Chunk.

2TB Fingerprints 
are generated .

Global indexing.
Disk bottleneck.

Existing data stream 

Input data stream

Locality Enhancement
Potential duplicate

Small files
(≤ 64KB)

Large files
(≥ 2 MB)

Percentage of 
total file number

≥ 80% ≤ 20%

Percentage of 
total space

≤ 20% ≥ 80%

Small files
(≤ 64KB)

Large files
(≥ 2 MB)

Percentage of 
total file number

≥ 80% ≤ 20%

Percentage of 
total space

≤ 20% ≥ 80%

Grouping many highly 
correlated small files 

into a segment to 
minimize dedup

overheads

Dividing the large 
files into many small 
segments to expose 

more similarity 
characteristics
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• The fragmentation decreases restore performance and results in invalid chunks 
becoming physically scattered in different containers after users delete backups. 

• HAR exploits historical information of backup systems to more accurately identify 
and rewrite fragmented chunks.

•History-Aware Rewriting algorithm (HAR)

Fragmentation in Deduplication 

24

"Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via 
Exploiting Historical Information", Proc. USENIX ATC, 2014,
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FFMPEG
SIFT LSH

Cuckoo-driven

Random kicking 
Semi-Random kicking 
Last-step kicking 

Example 2: Application-level 
Approximate Methodology--FAST

"FAST: Near Real-time Searchable Data Analytics for the Cloud", Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), November 2014
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File System Interface
Physical 
Devices

File 
SystemOperating 

Systems

FAST

QueriesAdd/Delete/Update

User Perspective 
(Interfaces)

Caching Prefetching

System Perspective 
(Performance Optimization)

Images Sources

PCA-SIFT
based Feature ExactionDoG based Detection 

of Interest Points
Interest Points

Feature Vectors

Multi-hashing Summarization

Correlated Groups

Summarized 
Bloom Filter

LSH based Semantic 
Aggregation

Cuckoo Hashing-driven 
Storage Strategy

Manageable Flat 
Addressing

Big Data Processing

Semantic 
Correlation 

Analysis

"FAST: Near Real-time Searchable Data Analytics for the Cloud", Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), November 2014

Application-level Approximate 
Methodology: FAST
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Approximate Image Transmission 
in Networking: SmartEye

Software Defined Network 
(SDN)

QoS-aware DiffServ

In-network Deduplication

Similarity

Label

Operations

Feature 
Representation Feature Detection

Feature 
Summarization

Label Mapping

Label Switching 

Label Generation

Label Matching

Classification

Indexing

Caching 
Management QoS Routing

Deletion

"SmartEye: Real-time and Efficient Cloud Image Sharing for Disaster Environments", 
Proceedings of INFOCOM, 2015, pages: 1616-1624
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The design of SmartEye
• Compact Feature Representation
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Locality Sensitive Hashing (LSH)
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Locality-Sensitive Hashing (LSH)

• Close items will collide with high probability
• Distant items will have very little chance to collide 
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Efficient Cuckoo-driven LSH

A multi-choice LSH Available locations for item a

Blue: hit position by LSH computation
Green: Neighbor bucket has data 
correlation

If all LSHi(a) are full, can choose 
adjacent empty bucket

Probing adjacent neighbors: the probability of endless “kicking 
out” is much more smaller than ordinary cuckoo hashing

(1) Use Cuckoo Driven LSH to reduce search time when collision occurs
(2) Use neighbor buckets to further reduce the possibility of kickout

(3) Space efficiency due to neighboring probe and data locality
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NEST: Efficient Cuckoo-driven LSH

A multi-choice LSH Available locations for item a

Blue: hit position by LSH computation
Green: Neighbor bucket has data 
correlation

If all LSHi(a) are full, can choose 
adjacent empty bucket

Probing adjacent neighbors: the probability of endless “kicking 
out” in NEST is much more smaller than ordinary cuckoo hashing

(1) Use Cuckoo Driven LSH to reduce search time when collision occurs
(2) Use neighbor buckets to further reduce the possibility of kickout

(3) Space efficiency due to neighboring probe and data locality

"NEST: Locality-aware Approximate Query Service for Cloud Computing", Proceedings 
of INFOCOM, April 2013, pages: 1327-1335
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NEST: Resolve Collision: if still 
fails

Hashing collisions for inserting item a Moving item h to its another location

Note: Adjacent probing significantly reduce or even avoid hash failing 
(FAST INDEX)
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Example 3: Pseudoforest

a 0

1

2

3

4

5

6

7

c

T2T1

b

d

e

x

a b

d x

An endless loop is formed.

Endless kickouts for any 
insertion within the loop.

"SmartCuckoo: A Fast and Cost-Efficient Hashing Index Scheme for Cloud Storage Systems", 
Proceedings of USENIX Annual Technical Conference (USENIX ATC), July 2017, pages: 553-566
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DLSH: A Distribution-aware LSH
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Distance computation

①

③ ②

④

①Projection vector selection

②Weight quantization

③ Interval adjustment

④ Frequency recordation

Due to distribution-unaware projection vectors:
Multiple hash tables to maintain data locality and guarantee 
the query accuracy.

Design goal:
Decrease the number of hash tables
Mitigate in-memory consumption

• Approach:
Differentiating the aggregated data in a suitable direction; 
Exhibiting the data locality as well as decreasing the hash 
collisions.

"DLSH: A Distribution-aware LSH Scheme for 
Approximate Nearest Neighbor Query in Cloud 
Computing", Proceedings of ACM Symposium on Cloud 
Computing (SoCC), 2017
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Example 4: On-line 
Precomputation--Data Cube

"ANTELOPE: A Semantic-aware Data Cube Scheme for Cloud Data Center Networks", 
IEEE Transactions on Computers (TC), Vol.63, No.9, September 2014, pages: 2146-2159.

• Leverage precomputation based 
data cube to support online cloud 
services

• Use semantic-aware partial 
materialization to reduce the 
operation and space overheads
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Open Source Codes (in GitHub)
• SmartCuckoo: in GitHub. SmartCuckoo is a new cuckoo hashing scheme to 

support metadata query service.
https://github.com/syy804123097/SmartCuckoo

• SmartSA (E-STORE): in GitHub to support near-deduplication for image 
sharing based on the energy availability in Smartphone.
https://github.com/Pfzuo/SmartSA

• Real-time-Share: in GitHub, to support real-time image sharing in the cloud, 
which is an important component of SmartEye (INFOCOM 2015).
https://github.com/syy804123097/Real-time-Share

• MinCounter: in GitHub. MinCounter is the proposed data structure in 
the MSST 2015 Paper.
https://github.com/syy804123097/MinCounter

• NEST: in GitHub (Download INFOCOM 2013 Paper, Source 
Codes, Manual and TraceData).
https://github.com/syy804123097/NEST

• LSBF (Locality-Sensitive Bloom Filter): in GitHub (Download TC 2012 
Paper, Source Codes and Manual).
https://github.com/syy804123097/LSBF
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Thanks and Questions


