
Semi-hierarchical Semantic-
aware Storage Architecture

Yu Hua
Huazhong University of Science

and Technology

https://csyhua.github.io

2

Current and Future Storage

S M I L E

3

Current and Future Storage 1

• SMILE
• Scale：Big Data，Big Storage

4

Current and Future Storage 2
• SMILE
• NN(M)-Intelligent：

5

Current and Future Storage 3
• SMILE
• Integrated：

Near Data Processing：
Processing in-memory (PIM)
In-storage computing (ISC)
Quantx(Micron), Optane(Intel), NDP(HUAWEI), ……

6

Current and Future Storage 4
• SMILE
• Long-term ：

Storage media and runtime context
Time-sensitive and value

7

Current and Future Storage 5
• SMILE
• Edge：
• Edge computing, fog computing,

proximity computing, ……

8

Challenge:
Hierarchical Architecture

Heterogeneous Principle
Differentiated Performance
Management Complexity

• One-storey house->Skyscraper
• More and more levels

9

Challenge: Storage Reliability

SRAM
DRAM
……

Volatile

HDD
Tape
……

Non-Volatile

NVM

10

Hierarchical Data Structure

Millions of files under each
directory

…

This tree is too FAT ! This tree is too HIGH !

11

Hierarchical and Vertical Architecture

• Idea: based on locality principle, some
key data consume many system
resources.

• However, in the era of big data, the
efficiency of locality becomes weak,
thus being difficult to improve hit
ratio.

12

The essence behind Hierarchy
• Goal：identify the correlation
• In essence, the hierarchy is an approach to

dynamic filter data to obtain correlated
aggregation and on-demand allocation.

• If the flat or semi-hierarchical schemes are
able to achieve the same goal, it would be
much better with significant performance
improvements.

Source
data

Correlation

Hierarchical

Flat

13

• Problem to be addressed:

How to storage data in large-scale storage
systems

• The idea：

Semantic storage is the new form of
implementing storage systems.

SemiSemi--hierarchical Architecturehierarchical Architecture

14

Our related work
• Semantic Namespace：SANE(TPDS14)

• Semantic Aggregation：FAST(SC14),
HAR(ATC14), SiLo(ATC11),

• Semantic Hash Computation：
SmartCuckoo(ATC17), DLSH(SoCC17),
SmartEye(INFOCOM15), NEST(INFOCOM13)

• Semantic On-line Service：ANTELOPE(TC14)

15

SANE: The namespaceSANE: The namespace

"SANE: Semantic-Aware Namespace in Ultra-large-scale File Systems", IEEE Transactions on Parallel and
Distributed Systems (TPDS), Vol.25, No.5, May 2014, pages:1328-1338.

16

Flat Addressing
• Hierarchy becomes the

performance bottleneck
• Design goals：

Searchable
Unique

SANE: The Semantic NamespaceSANE: The Semantic Namespace

• Construct the
semantic-aware
namespace

17

Comparisons with Conventional
File Systems

18

Grouping Procedures

Node Vector

19

Mapping of Index Units
• Our mapping is based on a simple bottom-up

approach that iteratively applies random
selection and labeling operations.

Index units
The first-level

index units

The second-level index unit

20

Components

Locality-aware
Identification

Per-File Namespace
Construction

Users

Enhanced POSIX I/O

Metadata Fetching

Access
Requests

Naming
Service

FUSE

Index Store

VFS

Hierarchical File Systems
……

POSIX I/O

File AttributesAccess Patterns

Semantic Grouping

Read

Write

Data
Management

Conventional Access
to File Systems

21

Naming and Rename
Submodular Maximization
Select a subset of namespaces with

distinct names

Maximization for Monotone
Submodular functions

• Scoring Function is a monotone
submodular function

– Greedy algorithm
– Constant-scale mathematical

quality guarantee

22

Example 1:
New Deduplication Ecosystem

22

Low-bandwidth network file
system (LBFS)

SOSP 2001

Data domain file system (DDFS)
FAST 2008

Venti: Archival data storage
FAST 2002

23

The Synergization of Similarity and Locality——
SiLo

Expose and exploit more similarity by grouping
strongly correlated small files into a segment and
segmenting large files

Leverage locality in the backup stream by
grouping contiguous segments into blocks to
capture similar and duplicate data missed by the
probabilistic similarity detection.

Expose and exploit more similarity by grouping
strongly correlated small files into a segment and
segmenting large files

Leverage locality in the backup stream by
grouping contiguous segments into blocks to
capture similar and duplicate data missed by the
probabilistic similarity detection.

“SiLo: A Similarity-Locality based Near-Exact Deduplication Scheme with Low RAM Overhead and High
Throughput,” Proceedings of USENIX ATC, June 2011.

The Scalability of
Deduplication Indexing

Deduplicate 800
TB unique data.

SHA-1 signature.
Avg. 8KB Chunk.

2TB Fingerprints
are generated .

Global indexing.
Disk bottleneck.

Existing data stream

Input data stream

Locality Enhancement
Potential duplicate

Small files
(≤ 64KB)

Large files
(≥ 2 MB)

Percentage of
total file number

≥ 80% ≤ 20%

Percentage of
total space

≤ 20% ≥ 80%

Small files
(≤ 64KB)

Large files
(≥ 2 MB)

Percentage of
total file number

≥ 80% ≤ 20%

Percentage of
total space

≤ 20% ≥ 80%

Grouping many highly
correlated small files

into a segment to
minimize dedup

overheads

Dividing the large
files into many small
segments to expose

more similarity
characteristics

24

• The fragmentation decreases restore performance and results in invalid chunks
becoming physically scattered in different containers after users delete backups.

• HAR exploits historical information of backup systems to more accurately identify
and rewrite fragmented chunks.

•History-Aware Rewriting algorithm (HAR)

Fragmentation in Deduplication

24

"Accelerating Restore and Garbage Collection in Deduplication-based Backup Systems via
Exploiting Historical Information", Proc. USENIX ATC, 2014,

25

25

FFMPEG
SIFT LSH

Cuckoo-driven

Random kicking
Semi-Random kicking
Last-step kicking

Example 2: Application-level
Approximate Methodology--FAST

"FAST: Near Real-time Searchable Data Analytics for the Cloud", Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), November 2014

26

File System Interface
Physical
Devices

File
SystemOperating

Systems

FAST

QueriesAdd/Delete/Update

User Perspective
(Interfaces)

Caching Prefetching

System Perspective
(Performance Optimization)

Images Sources

PCA-SIFT
based Feature ExactionDoG based Detection

of Interest Points
Interest Points

Feature Vectors

Multi-hashing Summarization

Correlated Groups

Summarized
Bloom Filter

LSH based Semantic
Aggregation

Cuckoo Hashing-driven
Storage Strategy

Manageable Flat
Addressing

Big Data Processing

Semantic
Correlation

Analysis

"FAST: Near Real-time Searchable Data Analytics for the Cloud", Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), November 2014

Application-level Approximate
Methodology: FAST

27

Approximate Image Transmission
in Networking: SmartEye

Software Defined Network
(SDN)

QoS-aware DiffServ

In-network Deduplication

Similarity

Label

Operations

Feature
Representation Feature Detection

Feature
Summarization

Label Mapping

Label Switching

Label Generation

Label Matching

Classification

Indexing

Caching
Management QoS Routing

Deletion

"SmartEye: Real-time and Efficient Cloud Image Sharing for Disaster Environments",
Proceedings of INFOCOM, 2015, pages: 1616-1624

28

The design of SmartEye
• Compact Feature Representation

29

Locality Sensitive Hashing (LSH)

30

Locality-Sensitive Hashing (LSH)

• Close items will collide with high probability
• Distant items will have very little chance to collide

31

Efficient Cuckoo-driven LSH

A multi-choice LSH Available locations for item a

Blue: hit position by LSH computation
Green: Neighbor bucket has data
correlation

If all LSHi(a) are full, can choose
adjacent empty bucket

Probing adjacent neighbors: the probability of endless “kicking
out” is much more smaller than ordinary cuckoo hashing

(1) Use Cuckoo Driven LSH to reduce search time when collision occurs
(2) Use neighbor buckets to further reduce the possibility of kickout

(3) Space efficiency due to neighboring probe and data locality

32

NEST: Efficient Cuckoo-driven LSH

A multi-choice LSH Available locations for item a

Blue: hit position by LSH computation
Green: Neighbor bucket has data
correlation

If all LSHi(a) are full, can choose
adjacent empty bucket

Probing adjacent neighbors: the probability of endless “kicking
out” in NEST is much more smaller than ordinary cuckoo hashing

(1) Use Cuckoo Driven LSH to reduce search time when collision occurs
(2) Use neighbor buckets to further reduce the possibility of kickout

(3) Space efficiency due to neighboring probe and data locality

"NEST: Locality-aware Approximate Query Service for Cloud Computing", Proceedings
of INFOCOM, April 2013, pages: 1327-1335

33

NEST: Resolve Collision: if still
fails

Hashing collisions for inserting item a Moving item h to its another location

Note: Adjacent probing significantly reduce or even avoid hash failing
(FAST INDEX)

34

Example 3: Pseudoforest

a 0

1

2

3

4

5

6

7

c

T2T1

b

d

e

x

a b

d x

An endless loop is formed.

Endless kickouts for any
insertion within the loop.

"SmartCuckoo: A Fast and Cost-Efficient Hashing Index Scheme for Cloud Storage Systems",
Proceedings of USENIX Annual Technical Conference (USENIX ATC), July 2017, pages: 553-566

35

DLSH: A Distribution-aware LSH

•1

() ⎥⎦
⎥

⎢⎣
⎢ +⋅=

ω
bqaqh

() () () ()qqqq hahaha kk
∗++∗+∗= ...g

2211

a b c
d

j

Distance computation

①

③ ②

④

①Projection vector selection

②Weight quantization

③ Interval adjustment

④ Frequency recordation

Due to distribution-unaware projection vectors:
Multiple hash tables to maintain data locality and guarantee
the query accuracy.

Design goal:
Decrease the number of hash tables
Mitigate in-memory consumption

• Approach:
Differentiating the aggregated data in a suitable direction;
Exhibiting the data locality as well as decreasing the hash
collisions.

"DLSH: A Distribution-aware LSH Scheme for
Approximate Nearest Neighbor Query in Cloud
Computing", Proceedings of ACM Symposium on Cloud
Computing (SoCC), 2017

36

Example 4: On-line
Precomputation--Data Cube

"ANTELOPE: A Semantic-aware Data Cube Scheme for Cloud Data Center Networks",
IEEE Transactions on Computers (TC), Vol.63, No.9, September 2014, pages: 2146-2159.

• Leverage precomputation based
data cube to support online cloud
services

• Use semantic-aware partial
materialization to reduce the
operation and space overheads

37

Open Source Codes (in GitHub)
• SmartCuckoo: in GitHub. SmartCuckoo is a new cuckoo hashing scheme to

support metadata query service.
https://github.com/syy804123097/SmartCuckoo

• SmartSA (E-STORE): in GitHub to support near-deduplication for image
sharing based on the energy availability in Smartphone.
https://github.com/Pfzuo/SmartSA

• Real-time-Share: in GitHub, to support real-time image sharing in the cloud,
which is an important component of SmartEye (INFOCOM 2015).
https://github.com/syy804123097/Real-time-Share

• MinCounter: in GitHub. MinCounter is the proposed data structure in
the MSST 2015 Paper.
https://github.com/syy804123097/MinCounter

• NEST: in GitHub (Download INFOCOM 2013 Paper, Source
Codes, Manual and TraceData).
https://github.com/syy804123097/NEST

• LSBF (Locality-Sensitive Bloom Filter): in GitHub (Download TC 2012
Paper, Source Codes and Manual).
https://github.com/syy804123097/LSBF

3838

Thanks and Questions

